中山間地における洪水と土砂の動態解析法の検討

長岡技術科学大学環境社会基盤工学専攻4年 飯澤 奎斗

1. はじめに

近年では、気候変動による異常気象と相まっ て、豪雨等と地震災害が結びついた複合災害が 発生している。特に豪雪災害や豪雨災害、土砂 災害の多い中山間地域では、複合災害のリスク が著しく大きくなっている。

令和6年元日の大地震から復興途上にあった石 川県の能登地方が、9月に記録的な豪雨により、 またも甚大な被害に見舞われた⁽¹⁾.この記録的 豪雨で相次いだ土砂災害の多くは、同年の能登 半島地震で生じた亀裂や地盤の緩みによって引 き起こされたとみられることが分かっている⁽²⁾. また、被災した状況を調査した結果では、ハザ ードマップに記載されていない箇所で被災した 場所も確認された⁽³⁾.

我が国は、地震大国と呼ばれるほど地震の発 生頻度が高く、温暖化などの気候変動による豪 雨も増加してきているため、それに伴い複合災 害に対してより注目していかなければならない と考えた。

既往研究では、中山間地での傾斜が急になっ ている地点での水の流れを把握し、事前に砂防 堰堤を設置する効果を検討したが⁽⁴⁾、 複合災害 による洪水等のリスクを評価するには、土砂の 移動までを計算できれば有意義性が高まると考 えた.

本実験では、令和6年9月の能登地方豪雨災害 で最も被害が集中した塚田川を対象とし、河川 の流れと土砂移動のモデルを結合させ、中山間 地の洪水の危険性を把握する数値モデルを構築 することを目的とする.

2. 実験方法

2.1解析条件

本研究では、石川県輪島市の塚田川を研究対 象とし、指定の場所に流量を与えて水面変動や 地形変化について解析を行う.本研究で用いる 計算プログラムは、計算ステップを0.5秒にして、 2日間分計測した.また、計算結果の図の出力は 300枚としている.加えて、シミュレーションに 使用した2日間分の雨量データは、令和6年に石 川県輪島市を襲った豪雨災害の、9月21日から9 月22日までの48時間の雨量データを用いる.

図2 令和6年9月21から22日の輪島市のハイエトグラフ

図1は塚田川周辺の標高,図2は輪島市の豪雨 災害時の雨量データを示したものである。

2.2 基礎方程式

本実験では, 式(1),(2)の非線形長波方程式を使 用する.

$$\frac{\partial \eta}{\partial t} + \frac{\partial}{\partial x} \int_{-h}^{\eta} u dz + \frac{\partial}{\partial y} \int_{-h}^{\eta} v dz = 0$$
(1)

$$\frac{\partial \eta}{\partial t} + \frac{\partial m}{\partial x} + \frac{\partial n}{\partial y} = 0, \quad m = \int_{-h}^{\eta} u dz, \quad n = \int_{-h}^{\eta} v dz \quad (2)$$

また,地形変化の算定式として,以下の(3)の 式を用いる.

$$\frac{\partial z}{\partial t} = -\frac{1}{(1-\lambda)} \left(\frac{\partial q_{Bx}}{\partial x} + \frac{\partial q_{By}}{\partial y} \right)$$
(3)

3. 実験結果

配布資料では、48時間後のシミュレーション 結果を抜粋して記載する.計算結果を衛星画像 に重ね合わせたものを以下の図2,図3に示す.

図2 48時間後の計算結果(水面変動)

図3 48時間後の計算結果(地形変化)

図2は48時間後の,水面変動についての計算結 果である.こちらは濃い青色から赤色に近づく につれ水面変動の変動地が大きいことを示して いる.図3は地形変化の計算結果である.地形変 化は水面変動に比べ,変化量がとても小さく, 地形変化量がマイナス変化だったものを青色, プラス変化だったものを赤色で示している.ど ちらの計算結果でも,下流側に加え,河川が蛇 行している箇所で変化が顕著に表れていること が分かる.

また図4,図5は実際の令和6年9月に起きた能 登半島の豪雨災害の被害が生じる前と後の比較 画像である.こちらの画像を比較してみると, 浸食や堆積が生じ河川の形が変わっていること が分かる.

4. 考察・まとめ

図3,図5の地形変化の計算結果を実際の被害 状況と比較すると、河川の曲線の内側部分では 地形変化がプラス変化であり、且つ土砂が堆積 している.一方曲線の外側部分では地形変化が マイナス変化であり、且つ浸食が進んでいるこ とが分かる.このことから地形変化の計算モデ ルは、2日間で得られるデータでは変化量が小さ く、定量的な評価は難しいが、地形変化が生じ た地点と当時の被災状況を照らし合わせると、 被害が生じた箇所と一致していることが分かっ

図4 塚田川の状況(平常時)

図5 塚田川の状況(被災時)

たため、土砂移動の計算モデルは定性的に評価 が出来ると考えられる.

今後の展望として、長期間での計算シミュレー ションを行う事や、本研究ではDEMデータを 10mメッシュで計算していたため、より細かいメ ッシュサイズでの計算を行う事、また堤防や家 屋の形といった更に細かい地物の情報を取り入 れることである.

参考文献

(1) 科学技術振興機構, 地震襲った能登地方に記録的豪雨、沖合の高い海面水温が極端雨量の要因に「複合災害」へ備えを

https://scienceportal.jst.go.jp/explore/review/2024092 7 e01/(閲覧日:2024-12-01)

(2) 日経クロステック, 能登豪雨で斜面崩壊が拡大、24年1月の地震が招いた複合災害

https://xtech.nikkei.com/atcl/nxt/column/18/00142/02 032/(閲覧日:2024-12-01)

(3) NHK, 犠牲者6割が中小河川の洪水で市や町の ハザードマップは未掲載

https://www3.nhk.or.jp/news/html/20241021/k100146 14971000.html(閲覧日:2024-12-01)

(4)榎本峻也 2023年中山間地の急流河川における天然ダムの危険度評価と対策