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1. INTRODUCTION 

 

Bicycle sharing system (BSS) are expanding 

rapidly worldwide as sustainable urban mobility 

solution, contributing to reduced traffic congestion, 

provide affordable last-mile connectivity, and lower 

greenhouse gas emissions (O’Brien et al., 2014; 

Mateo-Babiano, 2015; Fishman, 2016). There are 

currently over 1,917 BSS in operation worldwide, 

with Japan ranked 8th hosting 57 systems (Meddin, 

2022). Despite their benefits, BSS face operational 

challenges, particularly related to station imbalances 

leading to service disruptions such as empty stations, 

which compromise user satisfaction and in the worst 

case, may loss a potential customer. 

Niigata City7s 24-hour BSS, “Niigata 2km Share-

Cycle”, was launched in 2022 face the same issues as 

empty station still occur despite their redistribution 

efforts (Fig.1). 

 

 
Fig. 1 Average empty Station Occurrence Recorded 

in October 2022 

 

Station imbalances, characterized by surpluses or 

shortages of bicycle are a significant concern in BSS 

operations (Wong et al., 2015) Surveys by the Taipei 

YouBike system report over 36% of issues stemming 

from these imbalances, where users cannot pick up or 

return bikes due to station capacity constraints (Taipei 

Friendly Environment Association) and Barcelona’s 

BSS similarly experiences similar challenges 

(Kaltenbrunner et al., 2010). Addressing these 

imbalances is crucial for ensuring reliable service, 

particularly in cities like Niigata, where empty station 

occurrence persist despite active redistribution. 

 

2. LITERATURE REVIEW 

 

Research has explored various methods for 

optimizing bicycle redistribution. Studies have 

applied static redistribution strategies, like the 

Capacitated Vehicle Routing Problem (CVRP), to 

minimize operational costs (Dell ’Amico et al., 2014; 

Erdoğan et al., 2014). These static strategies focus on 

minimizing costs through predefined redistribution 

routes during low-demand periods. Dynamic models 

have also been explored to handle fluctuating demand 

patterns (Chen et al., 2024; Brinkmann et al., 2015; 

Shi et al., 2024).  

However, while demand prediction models are 

well-established, many studies focus on optimizing 

redistribution without considering real-world 

budgetary constraints and resource limitations.  

This research contributes to addressing gaps in 

existing literature by proposing an optimized static 

redistribution model for Niigata’s BSS, focusing on 

historical usage data with flexible demand coverage 

level where operators can set targets for bicycle 

demand coverage, balancing resource constraint and 

service performance. 

 

3. OBJECTIVE & METHODOLOGY 

 

(1) Research Objective 

Our main objective is to develop a cost-effective 

redistribution plan with a model considering buffer 

and historical usage pattern analysis to ensure the 

availability of bicycles at stations even during limited 

bicycle resources while also at reasonable cost. 

Particularly, the study has the following sub-objectives: 

i. To identify usage patterns. 

ii. To determine the required number of bicycles 

for each station, along with buffer levels. 

iii. To develop cost-effective redistribution 
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strategies that optimize available resources. 

(2) List of data 

With cooperation with “Niigata 2km Share-Cycle”, 

below are lists of data obtained; 

• Bicycle GPS Tracking Records: GPS 

logs are analyzed to identify demand 

variations and usage patterns, including 

outflow and inflow of each station. 

• Empty & Full Station Logs: to verify 

station activity patterns, station imbalances, 

and comparison of the redistribution results 

with the proposed model.  

• Manual Redistribution Logs: to verify 

station activity patterns, station imbalances, 

and the comparisons of the redistribution 

steps compared to the proposed model.  

• Weather Data: Historical weather data of 

Niigata city, sourced from the Japan 

Weather Association is used to analyze 

demand variations caused by weather 

conditions 

(https://tenki.jp/past/2022/10/weather/4/1

8/). 

 

(3) Research Process and Methodology 

 

Overall research is divided into two phases to answer 

the subobjectives (Fig. 2). 

 
Fig. 2 Research Process 

 

• First phase: Historical data on bicycle GPS 

tracking records, empty & full station logs, 

and manual redistribution patterns are 

analyzed to identify usage patterns and its 

station-wise demand variation. The optimum 

number of bicycles required at each specified 

station is then determined based on its 

coverage levels to prevent empty station 

occurrence. 

• Second phase: a capacitated static 

redistribution model is developed with buffer 

to allocate number of inventories within 

predefined bounds set by the operator and 

apply scenario-based modeling to optimize 

redistribution path even under limited number 

of bicycle resources. 

 

Phase One: Historical Usage Pattern Analysis 

 

Historical usage data forms the foundation to analyze 

required number of bicycles to prevent empty station 

occurrence. In Niigata2kmSharecycle BSS system, 

each bicycle is equipped with a GPS logger that 

records its location (latitude and longitude) at three-

minutes intervals. The GPS position data is used to 

identify the starting, and ending station of the trips, as 

well as the departure and the arrival times. Empty 

station history records are matched with GPS data 

timestamps to improve precision in hourly arrival and 

departure pattern analysis. This process allows hourly 

arrival and departure patterns at each station to be 

identified. 

The data categorized based on four temporal 

conditions: weekday (clear), weekday (rain), weekend 

(clear), and weekend (rain). Using arrival and 

departure data of each station, cumulative fluctuation 

was calculated to identify patterns in bicycle 

availability. A cumulative density function of negative 

fluctuations was developed to estimate the probability 

of station imbalances occurring. These fluctuation 

patterns were further analyzed to determine bicycle 

requirements and buffer levels needed to ensure 

consistent availability at each station. These results 

were used to estimate bicycle requirements and buffer 

levels to ensure consistent availability at each station. 

 

Phase Two: Redistribution Planning 

 

In our study, the model determines optimal 

redistribution strategies, including the stations to 

serve and the number of bicycles to redistribute based 

on bicycle allocations derived from historical data 

and predefined buffer levels. The redistribution 
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process follows these steps; 

1) Identify surplus station and its number of 

surplus stations: Stations exceeding upper 

buffer thresholds are classified as surplus 

stations, and the model calculates the number 

of bicycles available at surplus stations 

without reducing their inventory below the 

maximum buffer level. 

2) Address deficit stations: The models allocate 

the number of bicycles to be redistributed to 

the deficit stations, prioritizing minimum 

buffer requirements at deficit stations. If 

surplus bicycles remain after meeting 

minimum requirements, high-demand stations 

will receive additional bicycles until reaching 

the maximum buffer threshold. It continues 

until all surplus bicycles are distributed, or all 

maximum buffer requirements are met. 

3) Optimize vehicle routing: 

Using the shortest-path algorithm, the model 

determines the most efficient routes for 

collection and redistribution. Routes are 

optimized while adhering to vehicle capacity 

constraints to minimize travel distance and 

operational costs. 

4) Output redistribution plan:  

The model generates a detailed redistribution 

plan specifying the number of bicycles to be 

collected, number of bicycles to be 

redistributed, step-by-step station visit with 

the visual map, total predicted costs and the 

summary of the number of bicycles at each 

station before and after the redistribution 

operation. 

 

For redistribution, Network X was employed to 

model and plan the most efficient routes. Buffers are 

implemented that allows an inventory of bicycles lying 

between lower and upper bounds given based on the 

minimum and maximum target coverage level selected 

by the operator. Model will conduct the redistribution 

based on identified three case scenarios based on 

varying levels of surplus and deficits to dynamically 

allocate bicycles as efficiently as possible (Fig. 3).  

 

Fig. 3 Case-Scenarios and its Redistribution Plan 

 

Case 1; Maximum deficit ≤ Total Surplus 

  Case 1 is when the system has enough bicycles to 

meet the maximum demand at all stations. The goal 

here is to avoid unnecessary pickups and minimize 

operational costs by only covering essential demands. 

 

Case2; Minimum deficit ≤ Surplus < Maximum 

deficit 

  Case 2 is a situation when the system can meet only 

the minimum demand requirement at each station but 

cannot reach the maximum demand requirement. In 

this case, the model reassigns the number of bicycles 

to be allocated to each deficit stations. It first satisfies 

the minimum buffer levels first, and any remaining 

surplus bicycles are then allocated to high-demand 

stations to partially meet their maximum demand 

requirements. 

 

Case3; Surplus < Minimum deficit 

  Case 3 is a situation where the system cannot even 

meet the minimum demand across all stations. 

Redistribution prioritizes high-demand stations first, 

ensuring the most critical deficits are resolved while 

lower-priority stations may receive limited to no 

support. 

 

4. RESULTS AND DISCUSSIONS 

 

(1) First Phase: Historical Usage Pattern Analysis 

 

As of October 2022, Niigata’s BSS comprised one 

depot, 29 stations, and 252 parking docks, with 

capacities ranging from 5 to 12 slots per station. A total 

of 150 bicycles were in operation, serving 1,923 users 
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and 196,248 trips. Trip lengths ranged from 1.2km to 

2.1km, averaging 2km. It was assumed that users 

traveled directly from departure to arrival stations 

without intermediate stops.  

Stations located near transportation hubs and 

convention center exhibited higher levels of usage, 

where the circle sizes in Fig. 4 proportional to the rental 

amounts. This observed usage pattern serves as the 

foundation for a station priority in this study, guiding 

redistribution efforts to optimize resource allocation by 

prioritizing stations with high usage demands when only 

the bicycles are limited to comply to all demands. 

 
Fig. 4 circle sizes proportional to the usage 

demands 

 

Historical data revealed that weather conditions 

significantly influenced usage patterns. On clear days, 

an average of 179 trips per day was recorded, while 

rainy days saw a 27.93% decline, with only 129 trips per 

day. Similarly, activity levels varied by the day of the 

week, with weekdays averaging 135 trips per day and 

weekends experiencing a 57% increase to 212 trips per 

day.  

Spatially activity patterns also varied across stations 

based on their geographic characteristics. Stations near 

hotels exhibited prolonged periods of low bicycle 

activity excepts on the weekends, reflecting their role as 

first/last-mile transit points on weekends. Conversely, 

stations located near transportation hubs or shopping 

districts maintained consistent activity throughout the 

day, accommodating a diverse range of trip purposes. 

Further analysis highlighted nuanced differences in 

temporal patterns (Fig. 5).  

 
Fig. 5 Average Cumulative Fluctuations By Day 

(Station 30) 

 

On weekdays, station activity fluctuations were more 

pronounced due to a mix of commuting and leisure trips. 

In contrast, weekends exhibited more stable patterns, 

likely driven by users engaging with similar activities, 

such as shopping or recreation. Negative fluctuations, 

where departures exceeded arrivals, were more 

prevalent during daytime hours on both weekdays and 

weekends and often persisted until evening. This 

highlights the need for redistribution efforts to maintain 

adequate bicycle availability. 

Peak activity periods were identified between 7:00 

and 8:00 am on both weekdays and weekends, aligning 

with typical commuter behavior. This observation 

supports the feasibility of static redistribution strategies, 

allowing bicycles to be pre-positioned before 

anticipated peak usage. Weekday fluctuations were 

sharper due to mixed trip purposes, while weekend 

patterns remained stable, driven by recreational 

activities. Negative fluctuations during daytime during 

daytime hours on weekdays underscored the importance 

of timely redistribution to prevent station depletion. 

In identifying the minimum number of bicycles need 

to be stationed at each specific station, we first 

differentiate each day of the data into week of the day 

(weekend, weekday) and the weather (clear, rain). Then, 

the data is divided into category of weekend clear, 

weekend rain, weekday clear, and weekday rain to 

specifically identify the demand patterns based on is 

conditions. For each station we evaluated the net flow 

of bicycles on a daily basis, computed as the difference 

between the inflow and the outflows throughout the day. 

This gives the difference between the bicycles available 
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at the beginning of the day and the and those left at the 

end of the day in each station. We then plotted the 

redistribution of the net flows over the period. 

Fig. 6 shows the distribution graph in station 30 

during weekend clear where the x axis gives the 

cumulative fluctuations; which is the difference 

between arrivals and departures in a station per day, and 

the y axis is a cumulative probability; where it gives the 

percentage of occurrence this number appears in a day 

throughout the period that we studied. This shows that 

majority of the days over the observations of the stations 

ended up with a number of bicycles different from that 

available at the beginning of the day. This graph of the 

PDF and the CDF will support the choice of performing 

redistribution operations.  As we are focusing on 

preventing empty station occurrence, we only consider 

the negative fluctuations where departures exceeded 

arrivals, and removed the positive cumulative 

fluctuations. 

 

 
Fig. 6 PDF and CDF (Station 30) 

 

Table 1 shows the optimum number of bicycles at each 

station based on its target coverage level. Operators 

have the option to select coverage levels that best align 

with their budget constraints. leveraging these insights, 

operators can forecast bicycle shortages in advance, 

allowing for proactive redistribution. This ensures an 

expected continuous availability of bicycles across the 

station thus reducing the risk of empty stations. 

 

Table. 1 Number of Bicycle Required Based on 

Probability of Occurrence (Weekend-clear)

 
 

(2) Second phase: redistribution planning 

 

  Niigata BSS has single depot, where the 

redistribution truck is stationed. the system includes 29 

nodes (starting from station 1 to station 30, excluding 

station 3 as in the historical data, station 3 was being 

temporarily closed), representing the station locations 

based on October 2022. The geographical distribution 

of the station is illustrated in Fig. 7. 

 

 
Fig. 7 Location of the Depot and The Station 

Nodes 

 

It was considered that 2 staff were conducting the 

manual redistribution with wage per hour of 1,000yen, 

truck average speed of 20km/h, and the gasoline cost 

per km of 20yen. In addition, for the research 

discussion purposes and our attempt to solve real-

world instances, initial number of bicycles at each 
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station before the redistribution are set based on 

historical data, specifically on 11th October 2022 

(Table 2) with minimum coverage level set 95% 

(probability of satisfying at least 95% of the demand) 

and maximum coverage level set as 100% 

(probability of satisfying at most 100% of the 

demand). The details of inter-station node position 

coordinates and the initial number of bicycles before 

the redistribution operation are provided in table 4.1 

for clarity purposes. with set number of bicycle in 

operation of 170 bicycles 

 

Table. 2 Position Coordinates and Its Initial 

Number of Bicycles Before Distribution 

 
 

Based on the target minimum coverage level, 

target maximum coverage level, and current number 

of bicycles at each station before redistribution keyed 

in by the operator, the model will identify the case-

scenario and its distribution approach.  

Fig. 8 shows that the model identifies the 

redistribution to be a case 2, where the system can 

meet the minimum demand requirement at each 

station but does not have sufficient resources to fulfill 

all the maximum demand requirement at each station. 

Thus, the model will reassign the number of bicycles 

to be allocated to each specific deficit station. For this 

case scenario, the surplus bicycle first allocated to 

cover all the minimum requirement first. Since there 

is more remaining surplus (4 bicycles), the model 

then allocates the remaining bicycle to cover 

maximum requirement based on the station demand 

priority until all the surplus is used. Then, the model 

will made the summary of the redistribution plan, 

showing the selected deficit station and its numbers 

of bicycles to be redistributed. 

 

 
Fig. 8 Location of the Depot and The Station 

Nodes 

 

Then, the model will identify the shortest path for 

the collection and redistribution process. Table. 3 

shows the step-by-step redistribution procedure; 

including the station need to be visited in order, the 

number of bicycles needed to be collected or 

distributed at specific station, and the expected 

distance in meters for each steps taken. For an 

example at the first row of table 4.2, it shoes that 

redistribution vehicles first need to travel from station 

0 (depot) to station 28. At station 28, 1 bicycle need 

to be collected. And the summary for the distance 

taken from station 0 to station 28 is 240 meters. Table 

16 shows that in total, 32 bicycles had been 

redistributed for this redistribution process. 

 

Table. 3 Result Showing Redistribution 

Procedure from The Model 
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Fig. 9 shows the highlighted redistribution trip (left), 

and the summary of before and after the redistribution 

procedure, including the list of minimum required 

bicycles at each specific station, maximum required 

bicycles at each specific station, number of bicycles at 

each station before and after the redistribution. 

 

 
Fig. 9 Highlighted redistribution trip (left) and 

Highlighted station (Right) 

 

 

 Lastly, the model will identify the total cost taken 

for the redistribution process. Fig. 10 shows the 

summary of the total distance travelled, total cost; 

which includes labor wage, and the fuel costs, and the 

total estimated trip duration. 

 

 

Fig 10. result showing estimated operational cost 

from the model 

 

Results of the model by implementing 95% coverage 

level into the simulation and comparing the expected 

empty station occurrence result with the recorded 

empty station occurrence shows 20% to 100% 

reduction with station 1, 10, 16, 23, 26, and 27 shows 

100% reduction and station 15 showing least reduction 

at 20% (Fig.11).  

 
Fig. 11 Predicted Average Empty Station 

Occurrence After Implementation 

 

To comprehensively investigate the influence of 

coverage on the outcomes generated by the model 

presented in this research, the demand coverage level 

from 100%, 95%, 90%, 85%, and 80%. The 

sensitivity analysis showed decreasing coverage 

levels reduced costs and distances proportionally. 

100% coverage require to 26.02km redistribution trip, 

with operation cost of 8,750yen (8,230yen and 520 

gasoline price). When the coverage is changed to 

95%, the trip distance decreased by to 22.61km, and 

the cost of operation decreased to about 8,341yen. 

When the coverage is changed to 90%, the trip 

distance decreased to 17.95km, and the cost of 

operation decreased to about 7,782yen. When the 

coverage is changed to 85%, the trip distance 

decreased to 9.8km, and the cost of operation 

decreased to about 6,608yen (Fig. 12). Therefore, we 

believed that it was important to consider the 

percentage of coverage. 

 

 

 
Fig. 12 Sensitive Analysis on The Coverage Level 

 

5. CONCLUSION 
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This paper has proposed a cost-effective static 

redistribution model leveraging historical demand 

data to optimize BSS efficiency while balancing 

resource allocation and service quality. Using the 

Capacitated Vehicle Routing Problem (CVRP), the 

model efficiently solves redistribution challenges, 

considering truck capacity, demand coverage 

thresholds, and station priorities. Sensitivity analysis 

validated its responsiveness to changes in demand 

and bicycle availability, demonstrating how coverage 

levels impact trip distance and operational costs. 

Phase One revealed spatial and temporal demand 

variations, emphasizing the importance of timely 

redistribution to prevent station depletion. Phase Two 

optimized redistribution by identifying shortest paths, 

calculating bicycle movements, and analyzing cost 

trade-offs. Overall, this research provides a data-

driven framework to enhance Niigata’s BSS, offering 

adaptable strategies to improve resource allocation, 

reduce costs, and enhance user experience. 

 

6. LIMITATIONS & FUTURE WORKS 

 

This study is subject to certain limitations. Firstly, it 

ignoring the possibility of demand when there is event 

occurring at the specific locations. Thus, finding is 

limited to the demands at one season. Secondly, the 

research focusing on reducing the empty station 

occurrence and neglecting the station capacity, which 

may cause the probability of full station occurrence. 

In the future, this model can be extended to address 

these limitations by incorporate longer historical BSS 

data to capture seasonal demand variations (spring, 

summer, autumn, & winter). Event-related demand 

surges should also be considered by integrating data on 

location-specific local events to develop more adaptive 

redistribution models. While this study focuses on 

empty station reduction, future work on full station 

should account for enhanced operational efficiency. 
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