防災・復興システム工学研究室 市原直人

指導教員 高橋一義

1. はじめに

地球観測衛星は広域的かつ長期間継続した地表 モニタリングを行うことが可能であるため,土地被 覆の変化を捉えるための重要な情報源となってい る.その中でも Sentinel-2 衛星シリーズは,無償利 用可能な衛星の中で高い地上分解能と回帰日数を 持つ.また,観測範囲が全球であることから簡便に 地球全体を対象とした自動更新されていく時系列 観測データセットが利用可能である.このデータセ ットと事前に作成した深層学習ネットワークで解 析し続けることで,土地被覆変化発生時自動的に土 地被覆変化を判別できると考えた.

そこで本研究では、土地被覆を学習データとして 事前に作成した深層学習ネットワークによる過去 に発生した事象を対象に土地被覆変化の判別を行 い、時系列観測データセットを用いた土地被覆変化 箇所の自動判別について検討する.

2. 使用データ

対象地は 2022 年 8 月 3 日から 4 日にかけて新潟 県下越地方で観測された大雨と, 2023 年 7 月 10 日 に九州北部地方で発生した豪雨によって土砂災害 が発生した新潟県村上市荒川下流域, 福岡県久留米 市田主丸町竹野領域とする. この地域に加えて, 学 習データとして新潟県新潟市, 長岡市, 村上市の Sentinel-2 観測データを収集した. また, 土地被覆 変化箇所の位置を示す正解画像については筆者が 目視判別によって作成した.

3. 方法

3.1 利用する深層学習手法の検討

MathWorks 社の提供するソフトウェア MATLAB を利用して深層学習ネットワークを作成する.事前 に深層学習ネットワークを作成すること,教師デー タの必要がないことから,異常検知アルゴリズムの 一つである畳み込みオートエンコーダ (CAE)を採 用し,既往研究¹⁾の構造を参考にネットワークを作 成する.

3.2 従来手法による土地被覆変化判別

土地被覆変化判別結果の評価基準として, 差分解 析による土地被覆変化判別を行った. ここでは土地 被覆変化前後の NDVI 画像による差分解析から結 果を評価した. 本研究では画素値の差分を閾値とし, 閾値を 10 刻みで変動させて判別結果を評価する.

3.3 予備検討

3.3.1 学習データの検討

土地被覆は広域で同様の特徴を持つという考え の下, 複数地域を学習データに使用することで深層 学習ネットワークの性能向上に繋がるかを検討し た.その際, 深層学習ネットワークによる出力画像 の再現度評価に,式(1)により計算される構造的類 似性指数 (SSIM)を使用する.

$$SSIM(x, y) = \frac{(2\mu_x \mu_y)(2\sigma_{xy})}{(\mu_x^2 + \mu_y^2)(\sigma_x^2 + \sigma_y^2)}$$
(1)

x:画像 y:出力画像 μ_x, μ_y :局所平均 σ_x, σ_y :標準偏差 σ_{xy} :相互共分散

3.3.2 土地被覆変化と SSIM の対応関係

土地被覆変化が発生するとSSIMが低下すると考 え,新潟県村上市荒川下流域を対象地とした土地被 覆変化とSSIMの対応関係を確認する.

3.4 CAE による土地被覆変化判別手法

予備検討を踏まえ,複数の変更を加えて改良した ネットワークを使用し,土地被覆変化判別を行う. この手法では取得した画像から3バンド選択し組 み合わせた入力データに加えて,NDBI,NDVI, MNDWIの3種の指標画像を組み合わせて入力デ ータとした 2 ケースの入力データの組み合わせを 2つの研究対象地にそれぞれ作成した4ケースをそ れぞれ評価する.

4. 結果と考察

4.1 従来手法による土地被覆変化判別

差分解析による土地被覆変化判別結果では閾値 を高くすれば高くするほど精度と適合率が増加し 再現率が低下するトレードオフの関係にあること が示された.判別結果から再現率が90%と土地被覆 変化の取りこぼしが少なく,精度も80%を超えてい る閾値30の判別結果を評価基準とした(表1).

4.2 予備検討結果

4.2.1 学習データの検討

単一地域と複数地域をそれぞれ学習データとし た深層学習ネットワークにより長岡市の500m四方 領域を再現させた.その結果を表2に示す.この表 から複数地域を学習データに使用することで出力 画像の再現度向上に繋がることが示された.

4.2.2 土地被覆変化とSSIMの対応関係

土地被覆変化前後の対象地を深層学習ネットワ ークに再現させた結果を表3に示す.この表から, 使用した全てのバンドで土地被覆変化後のSSIMが 低下していることが確認できる.このことから土地 被覆変化が発生すると出力画像のSSIMが低下する ことが示された.

4.3 CAE による土地被覆変化判別

CAE による判別結果を表4に示す.この表から, 本研究の事前作成した深層学習ネットワークは既 往研究・従来手法に及ばないものの,ケースC2で はこれらに迫る判別結果となった.しかし,学習 データに対象地が含まれていないケースC3・C4で は,全ての評価指標が既往研究・差分解析より低く, 適合率が著しく低い結果となった.これの要因とし て,土地被覆変化前後で変化後の方が高いSSIMを 示したバンドが存在していたことで適切な閾値を 設定できていなかったこと.対象地の土地被覆変化 領域が影と重なってしまっていることで,変化した 領域が再現されていることが考えられる.

5. まとめ

本研究では、事前に作成した深層学習ネットワー クで時系列観測データセットを解析し続けること で自動的に土地被覆変化を判別することができる という考えの下、畳み込みオートエンコーダによる 土地被覆変化判別を行った.提案手法が既往研究や 従来手法に迫る判別結果を示したことから、事前に 作成した深層学習ネットワークによる土地被覆変 化判別について適用の可能性を示せたと考える.し かし、より適切な閾値の設定方法や、使用する学習 データの改善が新たな課題として示された.

参考文献

 Hejar Shahabi b "Unsupervised Deep Learning for Landslide Detection fromMultispectral Sentinel-2 Imagery" MDPI Remote Sens. 2021, 13(22), 4698;

表1 従来手法の判別結果

閾値	精度 (%)	適合率 (%)	再現率 (%)
30	83.1	23.1	90.6

表2 学習データの検討結果

	SSIM			
学習データ	パッチ枚数	短波長赤外	近赤外	緑
長岡市	2968枚	0.826	0.877	0.807
長岡市 新潟市	7321枚	0.868	0.923	0.844

表3土地被覆変化とSSIMの対応関係

	変化前	変化後
短波長赤外	0.819	0.800
近赤外	0.802	0.799
禄	0.723	0.680

表4CAEによる判別と既往研究」との比較

対象地	No	精度 (%)	適合率 (%)	再現率 (%)
新潟県村上市	C1	62.7	58.4	59.5
荒川下流域	C2	74.8	68.4	81.9
福岡県久留米市	C3	50.3	16.1	69.0
田主丸町竹野	C4	52.9	16.3	65.4
インド	既往研究		76.0	91.0
中国			72.0	87.0
台湾			77.0	82.0