環境防災研究室 DANG HOANG SON 指導教授 大塚 悟

1. はじめに

地盤の極限支持力は地盤工学の中心課題として精力的に多 くの研究が行われてきた. 基礎は上部構造物からの重力による 鉛直荷重のみならず、風力、波力、地震力などの水平荷重を受 けることも多く, モーメントが作用する複雑な荷重条件を有す る. Terzaghi (1943)は極限平衡法に基づいて鉛直中心荷重に対 する極限支持力計算方法を提案し、水平荷重やモーメントに関 する基礎の極限支持力は十分に精査されていない. このような 複合荷重に対しては、Meyerhof (1953)が模型実験に基づいて 底面幅を減少する有効幅のモデルを提案し、同モデルは現設計 法において幅広く採用されている. Pham et al (2019)1) は剛塑 性有限要素法を用いて、鉛直・水平荷重やモーメントからなる 複合荷重に対する基礎の極限支持力を提案しているが、地盤を 砂質土または粘性土に限定しており,実務で対象とする中間土 に対する支持力については未整理の課題として残されている. 本研究では、中間土地盤に対して偏心鉛直荷重を受ける剛基礎 の極限支持力解析を実施し、簡単な支持力式を提案することを 目的とする.

2. 剛塑性構成式

本研究では Drucker-Prager 型の降伏関数を用いた剛塑性構成式を以下にように誘導(1)している. I_1 は応力テンソル σ の第一不変量, I_2 は偏差応力テンソル s (以下, 偏差応力と省略)の第二不変量である.

$$f\left(\sigma\right) = aI_1 + \sqrt{J_2} - b = 0 \tag{1}$$

ここに、a、b は Mohr-Coulomb の破壊規準に基づく c'、 ϕ' と 関係付けられる係数である.この際、計算の高速化を目的に、ペナルティ法を適用することで体積変化の制約条件式(2)をペナルティ定数 κ とともに構成式内に直接組み込んだ剛塑性構成式(3)を開発した. \dot{e} は等価塑性ひずみ速度, $\dot{\epsilon}_v$ は体積ひずみ速度, $\dot{\epsilon}$ は塑性ひずみ速度ベクトル,I は単位テンソルを表す.また、引張応力を正と定義し、応力は有効応力 σ' とする.

$$h(\dot{\boldsymbol{\varepsilon}}) = \dot{\boldsymbol{\varepsilon}}_{v} - \frac{3a}{\sqrt{3a^2 + 1/2}} \dot{\boldsymbol{e}} = \dot{\boldsymbol{\varepsilon}}_{v} - \beta \dot{\boldsymbol{e}} = 0 \tag{2}$$

$$\mathbf{\sigma}' = \frac{b}{\sqrt{3a^2 + \frac{1}{2}}} \frac{\dot{\mathbf{\epsilon}}}{\dot{e}} + \kappa \left(\dot{\mathbf{\epsilon}}_{v} - \beta \dot{e}\right) \left\{ I - \frac{3a}{\sqrt{3a^2 + \frac{1}{2}}} \frac{\dot{\mathbf{\epsilon}}}{\dot{e}} \right\}$$
(3)

3. 強度の不連続線における剛塑性構成式

保科²⁾の研究より、接触型の剛塑性解析として異なる物体が 線的に接するときの接触面での応力~変位速度関係を剛塑性 構成式が提案されている。接触面では変位速度場の不連続性 を考慮し、以下の式(4)を示す。

$$f(\mathbf{t}) = |t_s| - c_s + t_n \tan \phi_s = 0 \tag{4}$$

ここに、 t_s 、 t_n は不連続線に作用する応力ベクトル t のせん断、垂直方向の成分であり、 ϕ_s 、 c_s は不連続線での材料パラメータである。相対変位速度ベクトル の運動条件 h (体積変化特性)は式(5)で表される。応力ベクトル t と相対変位速度ベクト

u $\Delta \dot{\mathbf{u}}$ の間に成立する剛塑性構成式を誘導する。降伏関数上の応力ベクトル \mathbf{t} を流れ則に基づいて $t = t^{(1)} + t^{(2)}$ のように降伏関数に直行方向の応力ベクトル $\mathbf{t}^{(1)}$ と平行方向の応力ベクトル $\mathbf{t}^{(2)}$ に分解すると、式(6)の不連続面での剛塑性構成式が得られる。

$$h(\Delta \dot{\mathbf{u}}) = |\Delta \dot{u}_s| \tan \phi_s - \Delta \dot{u}_n = \left(\frac{\Delta \dot{u}_s}{|\Delta \dot{u}_s|} \cdot \tan \phi_s - 1\right) \left(\frac{\Delta \dot{u}_s}{\Delta \dot{u}_n}\right) = \mathbf{a} \cdot \Delta \dot{\mathbf{u}} = 0$$
(5)

$$t = t^{(1)} + t^{(2)} = \frac{c_s}{\cos\phi_s (1 + \tan^2\phi_s)} \frac{\Delta \dot{\mathbf{u}}}{\|\Delta \dot{\mathbf{u}}\|} + \xi (\mathbf{a} \cdot \Delta \dot{\mathbf{u}}) \mathbf{a}$$
(6)
ここに、どはペナルティ定数であり

4. 偏心鉛直荷重よる極限支持力解析

剛塑性有限要素法で基礎の中心・偏心に鉛直荷重を想定した 極限支持力解析を行う.解析で拘束圧の影響を考慮しない Drucker-Prager 型の降伏関数での結果を「線形」とする. 図 1 は水平地盤モデルを示す. 底面を鉛直方向と水平方向ともに固 定し、左側面と右側面を水平方向固定としている。基礎の特性 が十分剛であること($c_{foot} = 500$ kPa, $\phi_{foot} = 0$)及び地盤との 単位体積重量が同じ ($\gamma_{foot} = \gamma = 18 \text{kN/m}^3$)と設定する. また, 地盤と基礎底面における二つの摩擦状態 (完全に粗または滑) を考慮し、不連続性を用いた Pham et al 1) と保科 2)の研究によ りインターフェース要素を配置し、剛塑性有限要素解析を行っ た. 表1はインターフェース要素の解析条件を示す. 条件とし て中間土上の剛基礎幅 B=1. 5. 10m で 2 パターンの解析を行 った. パターン 1 は $\phi = 30^{\circ}$ 、 c = 0.1γB, 0.5γB, 1.0γB kPa であ り. 一方、パターン 2 では c = 0.1 yB kPa、 $\phi = 30^{\circ}$, 35° , 40° に 対して解析を行った. e は基礎中心から鉛直荷重の作用位置ま での間隔である. 偏心量 e=0.0B、0.1B、0.2B、0.3B、0.4B に

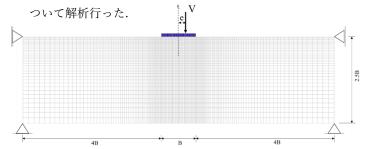


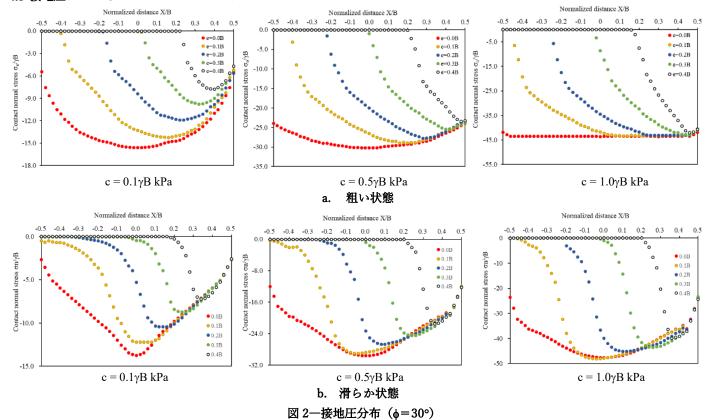
図1-水平地盤モデル

	粗い状態 (rough condition)	滑らか状態 (smooth condition)
粘着力 c_s (kPa)	$0.1\gamma B,0.5\gamma B,1.0\gamma B$	0.5
せん断抵抗角 ø s (°)	30, 35, 40	0
単位体積重量 γ _s (kN/m³)	0	

表 1-インターフェース要素の解析条件

4. 解析結果

4.1 接地圧について



基礎と地盤の間の薄い要素を設置して粗いと滑らかの解析 を行った. 図 2 に中間土($c = 0.1 \gamma B$, $0.5 \gamma B$, $1.0 \gamma B$ kPa, $\phi = 30^{\circ}$) の接地圧を示す. 粗い状態での接地圧の形は凹面形状している が、滑らか状態では三角形していることが確認できる. e≥0.1B では基礎の下部においても鉛直応力が0になる部分があるこ とが分かる. 粘着力が増加すると、基礎端部で接地圧の小さい 砂質土特有の三角形分布から,全般に接地圧が大きくなり,巨 視的に粘性土の分布特性に近づく傾向が確認された.

4.2 極限支持力について

4.2.1 粘着力による極限支持力への影響

図3はe=0.3Bでの等価ひずみ分布を示す. 図3より、滑ら か状態より粗い状態での鉛直荷重のほうが大きくなり, 破壊領 域も大きくなることが分かる. 図 4 では粘着力による影響につ いて鉛直荷重~偏心量関係及び鉛直荷重~転倒モーメント関 係を示す.図4aでは偏心量が増加すると、鉛直荷重率が減少す る. 図4bでは粘着力が増加すると、限界荷重空間はより正規 化モーメントが拡大するように変化している. 粗度を変化して も得られた解析結果はほぼ一致した.

4.2.2 せん断抵抗角による極限支持力への影響

図5a はせん断抵抗角の影響により鉛直荷重~偏心量関係を 示す. いずれかの偏心率においても、摩擦状態及びせん断抵抗 角を増加しても、鉛直荷重率が同じ値を得た、せん断抵抗角に も関わらず、ゼロから最大値までの偏心距離増加に応じた鉛直 荷重率が変化すると、転倒モーメントはゼロから上昇して、 0.9BVult ピークになってから,減少することが分かる. せん断 抵抗角が変化しても極限支持力面は一定である.

5. 結論

1. 中間土にする支持力式の提案

粘着力が大きいほど限界荷重曲面は大きくなる. 得られた曲 面はせん断抵抗角によらず一定であり、基礎幅底面の摩擦条件 にもよらない.

$$\frac{V}{V_{obs}} = \left(1 - 1.85 \frac{e}{B}\right)^{A} , \qquad A = \left(\sqrt{2} - 0.3 \left(\frac{c}{\gamma B}\right)^{0.3}\right)^{2}$$
 (7)

$$\frac{V}{V_{ult}} = \left(1 - 1.85 \frac{e}{B}\right)^{A} , \quad A = \left(\sqrt{2} - 0.3 \left(\frac{c}{\gamma B}\right)^{0.3}\right)^{2} (7)$$

$$\frac{M}{BV_{ult}} = 0.55 \frac{V}{V_{ult}} \left(1 - \left(\frac{V}{V_{ult}}\right)^{C}\right) , \quad C = \left(0.7 + 0.19 \left(\frac{c}{\gamma B}\right)^{0.3}\right)^{2} (8)$$

2. 接地圧分布の形状

接地圧分布は地盤の強度定数や基礎の摩擦条件によって異 なるために、現行の基礎指針とは設置ある分布が異なる結果と なったが、集中荷重に置き換えると荷重の作用点は指針と一致 する結果となった.

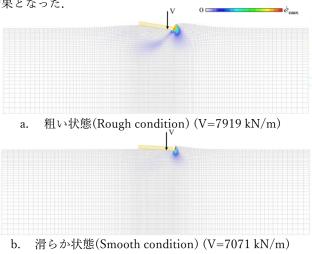
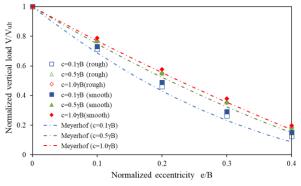
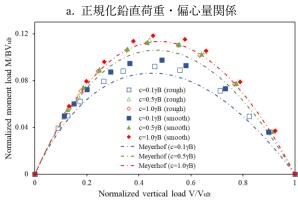
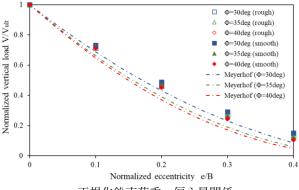


図 3-e=0.3B 場合等価ひずみ分布と変形図 $(c=1.0\gamma B \text{ kPa}, \phi=30^\circ)$





b. 正規化鉛直荷重・正規化モーメント関係 図 4-粘着力による影響 (B=5m, φ=30°)



a. 正規化鉛直荷重・偏心量関係

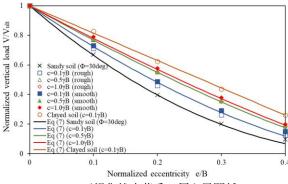
0.1

Ф=30deg (rough)
Ф=35deg (rough)
Ф=35deg (smooth)
Ф=35deg (smooth)
Ф=40deg (smooth)
Ф=40deg (smooth)
Ф=40deg (smooth)
Ф=40deg (smooth)
Ф=40deg (smooth)
Ф=40deg (smooth)
Ф=55deg (smooth)
Ф=40deg (smooth)
Ф=40deg (smooth)
Ф=55deg (smooth)
Ф=55deg (smooth)
Ф=40deg (smooth)

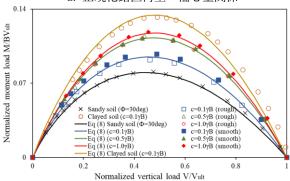
図 5-せん断抵抗角による影響 (B=5m, c=0.1γB)

参考文献:

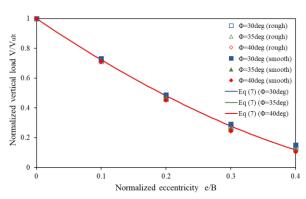
- 1. Pham, N.Quang, Ohtsuka, S., Isobe, K and Fukumoto, Y, Hoshina.T: Ultimate bearing capacity of rigid footing under eccentric vertical load, Soils and Foundations, 59(2019),1980-1991
- 2. 保科隆: 地盤材料の剛塑性構成式の開発と斜面安定・変形解析への応用,長岡技術科学大学工学研究科エネルギー環境工学専攻学位論文,p.19,2014



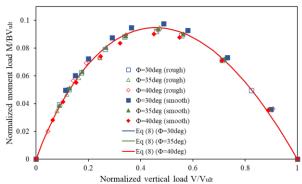
a. 正規化鉛直荷重・偏心量関係



b. 正規化鉛直荷重・正規化モーメント関係 図 6-粘着力による影響 (B=5m, φ=30°)



a. 正規化鉛直荷重·偏心量関係



b. 正規化鉛直荷重・正規化モーメント関係 図7-せん断抵抗角による影響 (B=5m, c=0.1yB)