# 可撓性踏掛版の力学的挙動に関する解析的検討

### Amarkhuu Tamir

#### 1. はじめに

橋台背面アプローチ部は,規模の大きな地震 が生じた際に橋の複雑な挙動や流動化による地 盤変状等の影響により基礎地盤や橋台背面アプ ローチ部の盛土等が沈下し路面に著しい段差が 生じる可能性が高い.特に耐震設計編において 規定しているB種の橋では,地震後における避 難路や救助・救急・医療消火活動及び被災地へ の緊急物資としての輸送路としての役割が大き いことから,基礎地盤や橋台背面アプローチ部 が沈下した場合でも,これらの沈下に追随しつ つ橋台との一体化を保つことが可能な対策を行 うことが望ましい.

踏掛版が施工されていない構造物背面部は少 なくなく、地方路線や生活道路には比較的多い. 維持修繕工事で鉄筋コンクリート製の踏掛版を 増設することは難しく、安価でかつ短時間で施 工できる段差抑制工法の開発が求められている. したがって、この対策として可撓性踏掛版に対 する需要が大幅に増加している.

従来,可撓性踏掛版について先行研究や実 物大規模の段差抑制評価試験が行われているが, 技術的なバックデータが不足していることから, 信頼性の高い構造的な解析が求められている.

そこで、本研究では FEM (有限要素法) プ ログラムを用いて、可撓性踏掛版の自重及び、 可撓性踏掛版上に載荷した大型車荷重 (T 荷重) によって発生する応力及びそれに対して必要な 強度を確認し、可撓性踏掛版の力学的挙動を予 測することを目的とした.

#### 2. 可撓性踏掛版

#### 2.1 概要

背面処理工,つまり可撓性踏掛版は,橋台背 面に鋼製六角パネルとアスファルト混合物の複 合体で可撓性の踏掛版を作る工法である.埋め 戻し材に圧密沈下等の変状が生じた時に変状に 追従して変形することで路面の勾配をなだらか に形成させ,ひび割れ及び段差の発生を防止す る.

可撓性踏掛版は、コンクリートを使用しない

ことから特別な養生期間を必要としないため, 早期に施工が完了する.アスファルト混合物の 養生が終了次第すぐに工事用車輌が通行できる ようになるため,工程の大幅な短縮が計られ, 結果としてトータルコストを低く抑えることが できる.





#### 2.2 可撓性踏掛版の構造

可撓性踏掛版は,路盤上に格子パネルで補強 したアスファルト混合物の版を構成し,その端 部を構造物背面に固定したものである.構造物 の固定には,不等辺山形鋼とアンカーボルトを 使用し,格子パネルと不等辺山形鋼を固定する ために,固定樹脂を取り付け部に用いる.踏掛 版のない既設橋へ容易に設置が可能で,鉄筋コ ンクリート製の踏掛版に比べて施工時間が短い ため,工期の大幅な短縮が可能である.



図 2.2.1 可撓性踏掛版の 3 次元構造図

### 3. 解析モデル

可撓性踏掛版は、鋼製六角パネルとアスファ ルト混合物の複合体、不等辺山形鋼、アンカー ボルト、アスファルト舗装の4つの部材で構成 される.

構成部材をそれぞれモデル化し、それを合わ せたものは可撓性踏掛版のモデルとなる.格子 パネルとアスファルト混合物の複合体は、ソリ ッド要素でモデル化をした.アスファルト舗装 もソリッド要素とした.不等辺山形鋼は薄板形 状であるため、シェル要素を用いてモデル化を 行った.アンカーボルトは、アンカー間隔 100mmごとの接点を固定支持とした.



#### 3. 解析条件

#### 3.1 段差がない場合

まず,橋台背面アプローチ部に段差が生じない,つまり地盤変状が発生しな

い通常の場合を考える.この場合,可撓性踏 掛版の下面に全体的に地盤があり,踏掛版が地 盤支持力を受ける.地盤支持力は弾性支持要素 を用いてモデル化をした.そのために,地盤支 持力係数(バネ係数)を指定する必要がある.



図 3.1.1 支持力係数と CBR 値の関係

土工部の締固め規定では上部路床に対して, CBR(路床土支持力比)が10%以上となる材料と施工を要求している.したがって,図 3.1.1の関係から,地盤支持力係数は5kgf/cm<sup>3</sup>以上である.

#### 3.2 段差がある場合

基礎地盤や橋台背面アプローチ部の盛土等が 沈下し,段差が生じた場合を考える.可撓性踏 掛版の目標性能としては大規模地震による 40 ~50cmの段差に対応できるものとし,最大 50cmの段差が生じた場合の可撓性踏掛版の自 重よる変状,不等辺山形鋼とアンカーボルトの 強度について確認した.

可撓性踏掛版の自重によって発生する応力と T荷重によって発生する応力を求めるために, 異なるモデルを解析して,それぞれの解析結果 を合わせた結果が可撓性踏掛版の安定性を確認 するためのものとなる.

#### 3.3 材料の物性値

解析には、格子パネルとアスファルト混合物 の複合体の弾性率について行った既往の引張試 験の結果を用いた.換算時間とは、定ひずみ速 度試験におけるひずみ値をひずみ速度で除した もので、あるひずみに達するまでに要する時間 を示すものである.

段差がない場合,ひずみが十分小さいことから 換算時間を短く,10<sup>0</sup>secとした.段差がある場 合は,換算時間10<sup>1</sup>,10<sup>2</sup>,10<sup>3</sup>,10<sup>4</sup>secの場合に FEM 解析を実施し,解析結果を既往の実物大 段差抑制効果試験結果と比較した.



図 3.3.1 材料の緩和弾性率のマスターカーブ

### 4. 解析結果

### 4.1 段差がない場合

ここでは、可撓性踏掛版の下面を面弾性支持 で支持し、自重とT荷重を載荷したモデルにつ いて FEM 解析を行った.なお、地盤の支持力 係数は 5kgf/cm<sup>3</sup> とした. 段差がない場合, 可 撓性踏掛版の下面が地盤面で支持されているた め、ひずみが十分小さいとみなすことができる. したがって、換算時間を短く、10°secとした. 換算時間が 10°sec における複合体, 密粒単体, 表層・基層単体の弾性率はそれぞれ 1456.1 kgf/cm<sup>2</sup>, 4421.6 kgf/cm<sup>2</sup>, 1096.3 kgf/cm<sup>2</sup> であ る.



図 4.1.1 可撓性踏掛版のひずみ

|                            | 解析結果  | 限界值   |
|----------------------------|-------|-------|
| アンカーボルトにかか                 | 0.117 | 引張強度  |
| る最大引張力 (kN)                |       | 13.4  |
| アンカーボルトにかか                 | 0.822 | せん断強度 |
| る最大せん断力 (kN)               |       | 19.4  |
| 不等辺山形鋼にかかる                 | 3.91  | 降伏点   |
| 最大応力度 (N/mm²)              |       | 245   |
| アスファルト舗装の                  | 4690  | 破壊ひずみ |
| 最大ひずみ (×10 <sup>-6</sup> ) |       | 42000 |

表 4.1.1 解析結果

**図** 4.1.1 は、段差がない場合の可撓性踏掛版 のひずみを示したものである.表 4.1.1 に,段 差がない場合の解析結果を示す. アンカーボル トと不等変山形鋼に発生する反力や応力はかな り小さく、降伏点以下である、また、踏掛版の 表層に生じるひずみが降伏点を越えない、つま りアスファルト舗装が破壊しないことがわかる. 4.2 段差がある場合

### 1.T 荷重に関する解析結果

不等辺山形鋼とアンカーボルトのみについて FEM 線形解析を実施した. 解析モデルは、シ ェル要素であり、ボルトの打込み位置における 節点を固定したものである.不等辺山形鋼に生 じる曲げモーメントの図を図 4.2.1 に示す.



図 4.2.1 不等辺山形鋼に発生するモーメント

|            | 解析結果 | 限界值  |  |  |  |
|------------|------|------|--|--|--|
|            |      |      |  |  |  |
| アンカーボルトにかか | 3.67 | 引張強度 |  |  |  |
| る最大引張力(kN) |      | 19.4 |  |  |  |

2.56

129.18

13.4

せん断強度

19.4

降伏点

245

表 4.2.1 解析結果

解析結果は、表 4.2.1 に示す、不等辺山形鋼 に発生する最大応力度の降伏点以下である.ま た、アンカーボルトにかかる引張力とせん断力 も引張強度とせん断強度以下である.

#### 2.自重に関する解析結果

アンカーボルトにかか

る最大せん断力(kN)

最大応力度(N/mm<sup>2</sup>)

不等辺山形鋼にかかる

換算時間 10<sup>1</sup>, 10<sup>2</sup>, 10<sup>3</sup>, 10<sup>4</sup>sec の場合に FEM 解析を実施し、解析結果を実物大段差抑 制効果試験結果と比較した.

a) 換算時間 10<sup>4</sup>sec

換算時間が 10<sup>4</sup>sec の場合の複合体, 密粒単 体、表層・基層単体の弾性率はそれぞれ 69.4kgf/cm<sup>2</sup>, 48.0kgf/cm<sup>2</sup>, 17.3kgf/cm<sup>2</sup> であ る. モデルの長さは 2m である.



図 4.2.2 可撓性踏掛版のひずみ(段差 500mm)

### b) 換算時間 10<sup>3</sup>sec

換算時間が 10<sup>3</sup>sec の場合の複合体, 密粒単体, 表層・基層単体の弾性率はそれぞれ 92.8kgf/cm<sup>2</sup>, 70.4kgf/cm<sup>2</sup>, 24.5kgf/cm<sup>2</sup> である. 解析モデルの長さは 2m である.



図 4.2.3 可撓性踏掛版のひずみ(段差 500mm)

### c) 換算時間 10<sup>2</sup>sec

換算時間が 10<sup>2</sup>sec の場合の複合体, 密粒単体, 表層・基層単体の弾性率はそれぞれ 339.8kgf/cm<sup>2</sup>, 336.7kgf/cm<sup>2</sup>, 86.7kgf/cm<sup>2</sup> である. 解析モデルの長さは 2m である.



## d) 換算時間 10<sup>1</sup>sec

換算時間が 10<sup>1</sup>sec の場合の複合体, 密粒単体, 表層・基層単体の弾性率はそれぞれ 676.8kgf/cm<sup>2</sup>, 784.1kgf/cm<sup>2</sup>, 424.0kgf/cm<sup>2</sup> で ある. この場合は, 解析モデルの長さが 3m で ある.





### 実物大段差抑制評価試験結果との比較

図 4.2.6 に可撓性踏掛版の実物大段差抑制評 価試験の結果を示す.なお、表面位置を表す横 軸の原点は U 字溝天端の中央であり、300mm の位置が U 字溝側面、すなわち構造物背面に 相当する<sup>4)</sup>.



図 4.2.7 は, 試験結果と換算時間ごとにおけ る解析結果を比較したものである. ただ, 試験 結果の段差は 480mm であるが, 解析結果は段 差 500mm としたものである. 図 4.2.7 から明 らかなように, 換算時間 10sec の場合の解析結 果が試験結果に最も近い.



図 4.2.7 実物大段差抑制評価試験の結果と 解析結果の比較



|                           | 段差 (mm) |       |       |       | 限界個   |         |
|---------------------------|---------|-------|-------|-------|-------|---------|
|                           | 120     | 240   | 360   | 480   | 500   |         |
| アンカーボルトにかかる               | 6.2     | 6.7   | 6.6   | 6.4   | 6.4   | 引張強度    |
| 最大引張力 (kN)                |         |       |       |       |       | 13.4    |
| アンカーボルトにかかる               | 0.59    | 0.66  | 0.70  | 0.73  | 0.73  | せん断強度   |
| 取入せん刷刀(KN)                |         |       |       |       |       | 19.4    |
| 不等辺山形鋼にかかる                | 240.5   | 258.9 | 257.1 | 251.5 | 250.4 | 降伏点     |
| 取八心//j浸 (N/IIIII)         |         |       |       |       |       | 245     |
| アスファルト舗装の<br>鼻士ひざひ (×10%) | 11000   | 13400 | 13200 | 14800 | 15000 | 破壊ひずみ   |
| 取入いりみ(~10)                |         |       |       |       |       | 42000   |
| 複合体の最大ひずみ                 | 9480    | 12400 | 12800 | 12000 | 12100 | 60000以上 |
| (×10 <sup>-6</sup> )      |         |       |       |       |       |         |

表 4.2.2 から見ると、アスファルト舗装およ び複合体に生じるひずみは破壊ひずみ以下であ る.表 4.2.2 の自重によってアンカーボルトに 生じる引張力とせん断力に表 4.2.1 の T 荷重に よって発生する引張力とせん断力が加わると、 アンカーボルトの強度以下である.一方、T 荷 重及び自重それぞれによって不等辺山形鋼に発 生する曲げ応力を足すと、段差 120~500mm のいずれも降伏点を越えている.つまり、段差 が生じた場合に踏掛版上に大型車荷重がかかる と、不等辺山形鋼に損傷が生じる.

そのため、不等辺山形鋼の標準断面寸法 L-100×75×10, L-125×75×13の場合に解析を 行い, T 荷重及び自重によって不等辺山形鋼に 生じる応力について確認した.

### 4.3 不等辺山形鋼に発生する応力の再確認

不等辺山形鋼の断面寸法を L-100×75×10 とし,換算時間 10sec における複合体やアスフ アルト舗装の弾性率を用いて解析を行った.

図 4.3.1 に, T 荷重によって不等辺山形鋼に 発生する曲げモーメント図を示す.



図 4.3.1 不等辺山形鋼に発生するモーメント

図 4.3.2 には, 段差 50cm の場合, 自重によって可撓性踏掛版に生じるひずみ図を示す.



図 4.3.2 可撓性踏掛版のひずみ(段差 500mm)

表 4.3.1 T 荷重に関する解析結果

|              | 解析結果  | 限界値   |
|--------------|-------|-------|
| アンカーボルトにかかる  | 3.67  | 引張強度  |
| 最大引張刀(kN)    |       | 13.4  |
| アンカーボルトにかかる  | 2.53  | せん断強度 |
| 最大せん断力(kN)   |       | 19.4  |
| 不等辺山形鋼にかかる   | 63.48 | 降伏点   |
| 最大応力度(N/mm²) |       | 245   |

表 4.3.2 自重に関する解析結果

|                                   | 段差 (mm) |       |       |       | 限界値   |         |
|-----------------------------------|---------|-------|-------|-------|-------|---------|
|                                   | 120     | 240   | 360   | 480   | 500   |         |
| アンカーボルトにかかる                       | 6.8     | 7.1   | 7.0   | 6.8   | 6.7   | 引張強度    |
| 最大引張力(kN)                         |         |       |       |       |       | 13.4    |
| アンカーボルトにかかる                       | 0.60    | 0.66  | 0.7   | 0.73  | 0.73  | せん断強度   |
| 最大せん断力(kN)                        |         |       |       |       |       | 19.4    |
| 不等辺山形鋼にかかる                        | 135.2   | 139.7 | 137.5 | 134.5 | 134.0 | 降伏点     |
| 最大応力度 (N/mm²)                     |         |       |       |       |       | 245     |
| アスファルト舗装の                         | 12000   | 14000 | 13600 | 14800 | 15000 | 破壊ひずみ   |
| 最大ひずみ (×10%)                      |         |       |       |       |       | 42000   |
| 複合体の最大ひずみ<br>(×10 <sup>-6</sup> ) | 10300   | 12800 | 13000 | 11900 | 12100 | 60000以上 |

表 4.3.1 と表 4.3.2 のアンカーボルトに生じ 引張力とせん断力を足すと,アンカーボルトの 強度以下である.それに,表4.3.1と表4.3.2の 不等辺山形鋼に発生する曲げ応力を足すと,段 差 120~500mm のいずれも降伏点を越えない. すなわち,不等辺山形鋼の厚さを 10mm とし た場合,不等辺山形鋼に損傷が生じないと検討 できる.

アスファルト舗装と複合体に生じるひずみは, 不等辺山形鋼の厚さ 7mm の場合の結果とそれ ほど変わらない.

#### 5.まとめ

・段差がない場合

可撓性踏掛版が地盤面で支持されている場合, 不等辺山形鋼とアンカーボルトにわずかな負担 しかかからなかった.それは,踏掛版の自重と T荷重の大部分を地盤支持力が負担するため, 不等辺山形鋼とアンカーボルトに発生する応力 が小さくなるためである.

・段差がある場合

FEM プログラムで行った解析結果と実物大 段差抑制評価試験により現れた可撓性踏掛版の 自重による変状がほぼ同様であることから,解 析結果の妥当性が高いといえる.

可撓性踏掛版の変状から見ると,橋台背面に 50cm ほどの大段差が生じた場合でも,路面を なだらかに変形させ,車両等が通過できるよう な形であると推定できる.

しかしながら,段差が生じた場合,大型車が 可撓性踏掛版を通過する際に不等辺山形鋼に損 傷が生じると予測される.

・不等辺山形鋼に発生する応力の再確認

不等辺山形鋼の断面寸法が L-100×75×10 の場合は,T荷重と可撓性踏掛版の自重によっ て不等辺山形鋼に生じる応力の合計は段差 50cm までの過程において 200 N/mm<sup>2</sup>であり, 降伏点 245 N/mm<sup>2</sup>より以下だった.したがっ て,可撓性踏掛版を橋台背面アプローチ部に固 定するために用いられる不等辺山形鋼の断面寸 法は L-100×75×10 以上が必要であると検討 される.