土壌水分欠損量を用いた土砂災害リスク評価に関する研究

長岡技術科学大学大学院 環境社会基盤工学専攻2年 中山航志

指導教員 陸 旻皎

1. はじめに

土砂災害の予測を行う上で、土壌水分量の評価は 重要である.従来の土壌水分量の評価手法において は、土層の深さを仮定する必要があり、仮定する土 層の深さによって土壌水分の絶対量が変化する問 題がある.そこで、土壌が飽和状態にあるときを基 準として、飽和状態になるまでに不足している水分 量を評価する土壌水分欠損量(Soil Moisture Deficit、以下 SMD)という指標を用いることで土層 の深さに関わらずに土砂災害予測を行うことがで きると考えた.

本研究では新潟県内において SMD の計算を行い, 土砂災害リスク評価手法としての適用性を検討する.

2. 対象地域と使用データ

対象地域は新潟県全域とし、1km×1kmの計算用メ ッシュを用意する.

雨量データは対象地域周辺の AMeDAS 観測点のも のを用いる.対象とする降雨は 2016 年 1 月 1 日か ら 2017 年 12 月 31 日までの 2 年間とし,計算開始 から 1 年分の結果は初期値の影響を軽減するため, 使用しないこととした.図1に対象地域とその周辺 の AMeDAS 観測点の概要,比較対象とした土砂災害 が発生した地点を示す.

図1 対象流域及び周辺の AMeDAS 観測点

3. 計算方法

対象地域で 1km×1km のメッシュを作成し, メッ シュごとに SMD の計算を行う.

SMD は既往研究¹⁾により図 2 に示すような土柱に おいて,(1)式及び(2)式のように表されることがわ かっている.

$$SMD = \int_{h}^{D} (\theta_{s} - \theta) dz \tag{1}$$

$$SMD = \int_{h}^{D} \left((\theta_{s} - \theta_{r}) \left(1 - \left(\frac{h + \Psi_{b} - z}{\Psi_{b}} \right)^{-\lambda} \right) \right) dz \quad (2)$$

ここで、 θ は体積含水率 $[m^3/m^3]$ 、 θ_s は飽和体積含 水率 $[m^3/m^3]$ 、 θ_r は残留体積含水率 $[m^3/m^3]$ 、 \mathcal{P}_b は 毛管ポテンシャル[m]、 λ は水分保持曲線の形状を 与えるパラメータである.

図 2 仮定する土柱

流域の蒸発量は蒸発能と蒸発効率により算出する.蒸発能には Selianinov が提案した有効積算温度²⁰から蒸発能を求める方法を用いる.蒸発能 E₆は次の(3)式で表される.

$$\mathbf{E}_0 = \mathbf{c} \sum \mathbf{T}_{10} \tag{3}$$

ここで、 E_0 は蒸発能[mm/yr]、cは比例係数(=0.18)、 ΣT_{10} は有効積算温度 $[C \Box]$ である.有効積算温度 10C以上の日平均気温の積算値である.今回は計算 ステップに合わせ、10分あたりの蒸発能を求めて使 用する. 次に蒸発効率 β は Deardorff の提案した(4)式³⁾ を用いる.

$$\beta = \min(1, \frac{\theta}{\theta_{fc}}) \tag{4}$$

ここで、 β は蒸発効率、 θ は体積含水率 $[m^3/m^3]$ 、 θ_{fc} はほ場容水量(pF1.5 での体積含水率) $[m^3/m^3]$ である.

これらの式より蒸発量 E は(5)式によって表される.

$$\mathbf{E} = \boldsymbol{\beta} \boldsymbol{E}_0 \tag{5}$$

冬期間の積雪に関しては気温が2℃を下回った時の降水を積雪として扱い,地下水位には直接反映しないこととした.融雪に関しては degree day 法により気温から融雪量を求め,降雨と同様に地下水位に反映させた.degree day 法による融雪量は以下の(6)式で求められる.

$$M = K \sum_{(T-T_{B} > 0)} (T - T_{B})$$
(6)

ここで、*M*は融雪量[mm], *K*は融雪係数[mm/°C/day], *T*は気温[°C], T_B は基準温度[°C]である.今回は一 般的な値として *K*=2mm/°C/day, T_B =0°Cを用いる.今 回は比較に用いる土砂災害の発生が夏季であるた め、積雪及び融雪に関する考察は省略する.

土壌パラメータに関しては農業・食品産業技術総 合研究機構『日本土壌インベントリー』に記載され ている物理特性を参照する.参照した物理特性を Brooks and corey式(下記(7)式)に代入し最小二乗 法を用いて誤差が最小となる値をSMDの計算に必要 なパラメータとして求めた.

$$\frac{\theta - \theta_r}{\theta_s - \theta_r} = \left(\frac{h_e}{h}\right)^{\lambda} \left(= \left(\frac{\Psi}{\Psi_b}\right)^{-\lambda} \right) \tag{7}$$

ここで、h。は空気侵入圧[m],hは土中水圧力[m]で ある.最小二乗法にはExcel 2013のソルバー機能 を用いた.これを全国約400種の土壌分類全てにお いて計算を行い、パラメータを導出した.

雨量データはティーセン多角形を用いてメッシュごとに近隣の AMeDAS 観測点のものを用いる.計算を容易にするために、メッシュ間での水の移動は考えないものとした.計算は fortran90 によるプログラムを用いた.

4. 結果と考察

2017年に発生した土砂災害のうち,大規模な降雨 があった7月3日から4日にかけての土砂災害,同 様に大規模な降雨があった7月18日の土砂災害, 中規模な降雨で発生した6月13日の土砂災害につ いて SMD との比較を行った.2017 年7月3日から4 日にかけて発生した土砂災害の地点および3日時点 での SMD を図3に示す.大規模な降雨であったため 新潟県全域で SMD は低い状態を示しているが,SMD が比較的高い地域では土砂災害が発生していない. 土砂災害が発生している地点に注目すると,図4に 示すように7月1日の午前0時時点では土砂災害が 発生する全地点で SMD が0.005 以下となっている.

図 3 2017年7月3日のSMD

図 4 各土砂災害発生地点での SMD(2017/7/1 0:00)

7月3日から4日と同様に土砂災害が多かった 2017年7月18日の新潟県全域のSMDを図5に示 す.この土砂災害については7月11日から18日 まで,発生地点全てにおいてSMDは0.002を下回 り,7月18日午前0時には図6に示すように全地 点で0.001以下を示した.これに関しては7月1 日から4日にかけた降雨と7月13日の降雨の影響 により,新潟県全域の土壌が常に飽和に近い状態 であったとみられる.また,図7に本降雨において 土砂災害が発生した代表の地点として長岡市川口中 山での土砂災害が発生するまでの降雨とSMDの変化 を示す.図7より,6月30日からの大きな降雨のあ と,7月6日頃からSMDが大きくなっていくが,何 度かの降雨によって再びSMDが低下し,7月18日 の大きな降雨で SMD は 0 になっていることがわかる.

図 6 各土砂災害発生地点での SMD(2017/7/18 0:00)

図 7 SMD 計算結果(2017/6/30~2017/7/18)

2017年6月13日に新潟県内で発生した土砂災害 の地点およびその時のSMDを図8に示す.また、図 9に6月1日から土砂災害発生までのSMDの変化と 降水量を示した.比較的降水量は小さいが、SMDが 常に小さい状態を推移しており、6月10日の降雨 の後に土砂災害が発生している.この事例に関して は発生地点が一か所だけであるが、降水の大きさに よらず土砂災害が発生したタイミングではSMDが低 い値を示すことを確認した.

これらの結果からSMDが低い状態を示していると、 降水の大きさに関わらず土砂災害が発生する危険 性が高いことが示唆された.明確なしきい値の決定 は今回の研究ではできなかったが、検証する事例を 増やすことでより詳細な関連性を把握できると期 待される.

5. まとめと今後の展望

本研究では土壌水分欠損量(SMD)の土砂災害リス ク評価手法としての適用性を新潟県内において検 討した.その結果,土砂災害発生時にはいずれもSMD が低くなっていることがわかった.今後の展望とし ては,複数の土砂災害事例での検討を行っていく. また,蒸発式をより実現象に即したものにすること や,浸透による土壌水分の損失を考慮することによ る影響も考える必要性がある.

参考文献

- 金子真郷,陸旻皎:土壌水分が流出に与える 影響について,第26回土木学会関東支部新 潟研究調査発表会論文集,pp.112-113,2008
- 2) ミハイル・イ・ブディコ,内嶋善兵衛 訳:地 表面の熱収支,成山堂書店,pp. 183-185, 2010
- 3) J.W.Deardorff: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation, Journal of Geophysical Research: Oceans Volume 83 Issue C4, pp. 1889-1903, 1978