環境社会基盤工学専攻

鋼構造研究

指導教員:岩崎 英治

バルバ プエンテ カルロス ヒルベルト

1. 概要

2033年に日本にある約7割の橋梁は50年の設計 寿命を超える。これより、定期的な点検や適切な 維持管理は大きいな課題になってきた。特に鋼ト ラス橋梁では、一つの部材の破断でも構造が全体 的に落橋する可能性がある。

2007 年にガセット板の破断でミシシッピー川 (アメリカ)を渡る I-35W 橋は落橋し、13 人が 死亡して 145 人がけがを受けた。2007 年にも日 本にある鋼トラス橋も一つの部材の破断事件も生 じたが、この橋は部材を破断した後、落橋せずに 安定な構造を確保した。落橋した橋梁と落橋しな かった橋梁の違いは冗長性の違いにある。橋梁の 冗長性というのは橋梁の主要な部材が破壊した時 に,その部材が受け持つ荷重を他の部材が代わり に負担してくれるかどうかを指すとある。近年、 鋼トラス橋梁に適切な点検や維持管理をするため に、橋梁の冗長性評価が重要である。

図-1. I-35W 橋の落橋

URS(2006)永谷(2008)はリダンダンシー評価ガ イドラインによる鋼トラス橋の静的線形解析によ るリダンダンシー評価の方法を紹介した。橋梁の 1 つの部材が破断した後、冗長性を測定するため に二つの式を提案し、式1(Eq.1)は引張部材を 対象し、式2(Eq.2)は圧縮部材を対象した。

$$R = \frac{N}{N_p} + \frac{M_x}{M_{px}} + \frac{M_y}{M_{py}}$$
Eq.1

$$R = \frac{P}{P_u} + \frac{1}{1 - \frac{P}{P_{ex}}} \frac{M_{eqx}}{M_{px}} + \frac{1}{1 - \frac{P}{P_{ey}}} \frac{M_{eqx}}{M_{py}}$$
Eq.2

URS と永谷を提案した線形強度相関式では、部 材の線形強度は塑性軸力強度と塑性曲げ強度の線 形関係で表されている。

岩崎 Khuyen は、過去の研究をもとに静的線形解 析による部材の断面形状によって全塑性強度を考 慮することで非線形強度相関式を提案した。

非線形強度相関式の Eq.1 は引張り部材を対象し、 Eq.2は圧縮部材を対象する。

$$R = \left(\frac{M_x}{M_{pcx}}\right)^{\alpha x} + \left(\frac{M_y}{M_{pcy}}\right)^{\alpha y}$$
Eq.3
$$R = \left(\frac{M_{eqx}}{M_{pux}}\right)^{\alpha x} + \left(\frac{M_{eqy}}{M_{puy}}\right)^{\alpha y}$$
Eq.4

鋼トラス橋のリダンダンシー評価で岩崎と Khuyen が提案した非線形強度相関式信頼性をわ かるために、静的線形解析による非線形相関式と 線形相関式で図-2下路式の鋼トラス橋のリダンダ ンシーを評価した。その後、静的線形解析より精 度が高いかつて複雑な静的非線形解析によるリダ ンダンシー評価を行い、静的非線形解析による結

果を静的線形解析による非線形相関式の結果と線 形相関式の結果と比較した。

図-2. 下路式の鋼トラス橋

岩崎と Khuyen の研究によると、非線形相関式は 90%以上の精度が確保、線形相関式は 70%の精 度を確保した。

2. 目的

非線形相関式は線形相関式より鋼トラス橋のリ ダンダンシー評価で精度が高いと見られるが、鋼 トラス橋形式による構造挙動が異なるので、どの 鋼トラス橋形式でも適応できるため、下路式の鋼 トラス橋と違う鋼トラス橋形式にも非線形相関式 の信頼性を検討する必要がある。それより、他の 鋼トラス橋形式で非線形相関式の信頼性を検討す る。また、URS が提案した線形相関式との信頼 性を比較する。

3. 研究の流れ

本研究は鋼トラス橋形式3式の橋梁で検討を行っ た。橋梁Aは下路式単径間であり、橋梁Bは上路 式単径間であり、橋梁Cは上路式2径間である。 非線形相関式と線形相関式の信頼性を比較する ために、各橋梁モデルで5ケースを設定した。各 ケースでは、一つの仮想部材の破断を再現してい る。各ケースで一つの静的線形解析を行った。本 研究では、FCM 部材(崩壊危険部材)だけを仮想 部材として選択した。静的線形解析において、仮 想部材の破断を再現するため、モデルから仮想部 材を除去し、仮想部材の断面力を逆方向に作用し た。図3は仮想部材除去の流れを示す。

図-3. 仮想部材の破断

破断した仮想部材の解放力は部材の両端に反対方 向に作用している断面力である。断面力に乗算さ れた拡大係数αは、突然の部材破断の動的影響に 対処します。仮想部材が取り除かれた後、その部 材の断面力は、部材が圧縮にある場合には 1.0 ま で、部材が引張にある場合には 1.854 までの荷重 ステップによって反対方向に作用し、1.854 は部 材破断の動的効果を考慮する。仮想破断部材が除 去された後、残りの部材はリダンダンシーRを評 価するために線形相関式および非線形相関式によ って評価した。R> 1の場合、その部材は作用 している力以上を負うことができず、破断した。 本研究では、仮想部材の除去後、線形相関式およ び非線形相関式で計算した Rが1を超えた時の解 放力を計算した。

静的線形解析による形相関式および非線形相関式 の精度を把握するために、静的線形解析より信頼 性が高いかつて複雑な静的非線形解析を行った。 静的非線形解析による仮想部材を取り除いていく 中で、残り部材で座屈や全塑性が生じた時に仮想 部材の解放力を計算した。それで、静的線形解析 による形相関式および非線形相関式で計算した解 放力を信頼性が高い静的非線形解析で計算した解 放力と比較した。

4.数值解析

有限要素法の数値解析は COMP という岩崎の FEM ソフトで行った。橋梁A、B、およびCモデ ルを作り、静的線形静解析および静的非線形静解 析を使用して各ケースの解析を行った。コンクリ ート床版はシェル要素として表し、トラス要素は スチールビーム要素として表した。トラス接合部 は橋に沿って固定として接続されていると仮定し た。 静的非線形解析では、トラス部材の鋼材の 降伏点が考慮した。また、各部材の断面を塑性を 捉えるために 10 層に分けた。

5. 結果

図-6. 非線形解析との比較

6. 結論

橋梁 B と橋梁 C では、従来の線形相関式の 90% 精度に対し、非線形相関式の精度は約 95%であ る。

僅か 5%の精度の違いがあるが、非線形相関式は まだ線形相関式よりも正確であることが明確にな った。

橋梁 A では、線形相関式の精度は 80%に低下す るが、非線形相関式は 90%以上の精度を確保す る。橋梁 B と C より橋梁 A の線形相関式の精度 低下は鋼トラス橋梁の形式によって、構造的な挙 動が異なるという理由である。

上路式鋼トラス橋梁である橋梁 B と C は N / Np 比が M / Mp 比よりも高い。二軸曲げモーメント が低く、線形相関式と非線形相関式の精度差が低 い。しかし、下路式鋼トラス橋梁橋梁 A の場合は、 N / Np 比が低下し、M / Mp 比が増加するので、 二軸曲げモーメントの影響が大きくなる。線形相 関式は二軸曲げモーメントを考慮しないので、下 路式鋼トラス橋梁橋梁 A の場合、精度が低下する。 本研究では、非線形相関式によるリダンダンシー 評価は下路式鋼トラス橋梁および上路式鋼トラス 橋梁でも 90%以上の高い精度を確保することがわ かった。また、非線形相関式は様々な鋼トラス橋 梁のリダンダンシー評価で適応できるとわかった。