地盤工学研究室 高杉凌平

指導教員 豊田浩史

1. はじめに

近年,鉄道の高速化により,鉄道沿線の振動問 題が大きな課題となっている.振動への対策とし ては,加振力の周波数特性を把握し,卓越する周 波数帯で,振動低減効果が発揮される対策を選定 することが効果的である.しかし,実際の振動伝 播機構の解明や,防振効果の高い施工法の特定に までは至っていない.

そのため、本研究では、新幹線振動の低減を目 的とした防振壁を設計する上で必要となる基礎デ ータを収集するために、1/100スケールでの模型 試験を実施し、新幹線通過時に発生する振動の広 がりに着目した振動伝播特性の把握と、防振効果 が期待される防振壁の根入れ深さに関する研究を 実施した.

2. 試験条件

本研究では、防振壁を模擬した防振材を地盤に 挿入し試験を行った. Table 2.1 に試験条件をまと めたものを示す. 主に防振壁のサイズ、質量、剛 性に着目した試験を実施した. 試験条件は、防振 壁を設置しないケースと設置するケースの計 17 ケ ースである. この試験は、実験土槽内に作製した 模擬地盤を用いて行った. 本試験に用いた模型地 盤は、模型縮尺 1/100、相対密度 Dr60%、小名浜 砂を用いて作製した. Table 2.2 に適用した相似則 を示す. 実物の長さ *lp* と模型の長さ *lm* の比を相 似比 $\lambda = lp/lm$ と定義し、砂の振動実験でよく用い られる、砂のせん断剛性 G が拘束圧の平方根に比 例するという実験結果によるものを利用した¹⁾.

Table 2.2 相似則

	地盤の動的問題に特化した相似則		
波長L	λ^{-1}		
応力 σ	λ ⁻¹ (材料密度による)		
せん断速度 <i>Vs</i>	$\lambda^{-1/4}$		
角振動数ω	$\lambda^{3/4}$		
加速度a	$\lambda^{1/2}$ (長さと速度を合わせた場合)		

3. 使用機器

3.1 使用機器

本試験では振動源として、小型起振器を用い た.用いた起振器は、幅=41(mm)、奥行=41(mm)、 高さ=56(mm)、重さ 0.4kg、加振力:9.8N、最大加 速度:無負荷時 326m/s²の性能を持つ.また試験 で用いた基礎模型のベースとして直径 120mmのペ デスタルを起振器土台として使用した.土槽は、 幅=1.7(m)、長さ=2.8(m)、高さ=1.6(m)である.

土槽は一般構造用圧延鋼材 SS400 によって作製 されており、また、土槽の構造、大きさによっ て、外来ノイズや壁面反射波の干渉が問題視され ているため、影響を軽減させるために、土槽内壁 に緩衝材を設けた.緩衝材の材料として、押出式 ポリスチレンフォーム保温版 1B(スタイロフォー ム)を使用した.

		防振材						
実験名	Case名	厚さ	幅	高さ	根入れ	防振材の	★★ 反도	<i>供</i>
		(mm)	(mm)	(mm)	(mm)	個数	们貝	加方
無対策	Case0			_	—	—	_	対策なし
	Case1-1	5	860	200	150	2	真鍮	防振壁連結あり
根入れ実験	Case1-2	5	860	87.5	37.5	2	真鍮	防振壁連結あり
	Case1-3	30	860	25	0	1	真鍮	壁状に設置
施工性を	Case2-1	5	860	200	150	5	真鍮	防振壁連結なし
考慮した実験	Case2-2	30×30	860	15	0	59	鉛パック	壁状に1列・2段に設置

Table 2.1 試験条件一覧

3.2 防振材

根入れ実験の防振材は, C2801P 真鍮板を使用した.防振材の大きさは,幅430mm,高さ200mm,厚さ5mmのものと,幅430mm,高さ87.5mm,厚さ5mmのものと,厚さ30mm,幅860mm,高さ25mmの1枚の板となる.厚さ5mmの防振壁は,幅430mmの防振壁を2枚隣合わせて,2枚の防振壁の境目を固定した.防振壁の上端はアルミ製のフレーム材をボルトで固定し,下端は鉄製の連結板を取り付けボルトで固定した.防振材の根入れ深さは,Case1-1が150mm,Case1-2が37.5mm,Case1-3が0mmとなるように設置を行った.

施工性を考慮した防振材では、C2801P 真鍮板と重 量物として 30mm×30mm のバッグに鉛玉を入れた ものを使用した. 真鍮板の大きさは、厚さ 5mm,幅 172mm,高さ 200mm である.施工性を考慮し、5 枚の分割壁の状態で根入れ深さ 150mm となるよう に設置した. 鉛バッグは、59 個を一列二段となるよ うに設置した.

3.3 使用機器等の設置方法

Fig. 3.1~Fig. 3.3に,使用機器等の設置位置を 示す.設置した加速度計は,起振器の制御用に1箇 所と制御値のモニター用が1箇所の他,無対策で は,地表面に12箇所設置する.その他の実験では 防振壁上に3箇所,地表面に10箇所設置する.土 槽の軸は,土槽の短軸方向をX軸,長軸方向をY 軸と設定した.

4. 測定条件

本試験の加振条件は,Table 4.1 に示した通りであ る.これまでの様々な研究より,地盤を伝播する振 動の卓越周波数は,概ね1~100 Hz(実物換算周波 数)であるということが報告されている.これを受 けて,加振周波数は,模型レベル換算で5~3,000Hz の領域に設定した.また,サンプリングインターバ ルについては,Table 4.2 に示す.

Fig 3.1 CaseO

Fig 3.2 Case1-1, Case1-2, Case2-1

Fig 3.3 Case1-3, Case2-2

Table 4.1 起振器の加振条件

加振波形	Sin波		
加速度 Gal	1,000		
加振周波数(Hz)	5 ~ 3,000		

Table 4.2 加速度波形測定条件

加振周波数 (Hz)	サンプリング インターバル (μ sec)	サンプリング時間 (sec)	サンプル数
5 ~ 3,000	100	40	400,000

5. 試験結果

5.1 試験結果の整理方法

得られたデータから加速度振幅スペクトル比*N*を 算出した.

Amplitude rate, $N = \frac{A_{ground}}{A_{exciter}}$

ここで、A_{ground}は、地盤の加速度振幅(m/s²)、 A_{exciter}は、起振機の加速度振幅(m/s²)とした.

さらに,無対策の Case0 を基準として,各実験で 算出された振幅比から振動低減率を算出した.

Reduction rate(%) = $\left(1 - \frac{N_i}{N_0}\right) \times 100$

ここで、 N_i を各ケースの加速度振幅スペクトル比、 N_0 を Case0 の加速度振幅スペクトル比とする.

この振動低減率から振動伝播特性や様々な振動対 策工法による振動低減効果について考える.

Table5.1 に模型実験で測定した周波数を実物周波 数に変換したものを示す.低周波数(95Hz~160Hz), 中周波数(160Hz~316Hz),高周波数(316Hz~632Hz) の3つの周波数領域に区分して比較する.本報告で は、実地盤の卓越周波数である中周波数帯に着目し 考察を進めていく.

	実物レベル(λ=1)	模型レベル(λ=20)
低周波数	3~5Hz	95Hz~160Hz
中周波数	5~10Hz	160 z~ 316Hz
高周波数	10 ~ 20Hz	316Hz~632Hz

Table 5.1 周波数変換一覧

5.1 振幅比の結果

Fig 5.1に各ケースの振幅比の結果を示す. 全ケ ースとも振幅比の距離減衰が見られた. 根入れ実験 の3ケース(Fig 5.1(b)(c)(d))では, 防振壁による 振動低減効果が確認された. 施工性を考慮した実験 の2ケース(Fig 5.1(e)(f))では, 振幅比を増大さ せるなど, 低減効果が発揮されていなかった.

5.2 低減率の結果

Fig 5.2 に、中周波数帯における各ケースの根入れ深さと低減率のグラフを示す.

(a) 根入れ実験(b) 施工性を考慮した実験Fig 5.2 中周波数帯の低減率

根入れ実験の3ケースでは、根入れが深くなるほ ど振動低減効果の増大が見られた.しかしながら、 根入れ深さゼロでも、かなりの振動低減効果が読み とれる.それに比べ、施工性を考慮した2ケースは 低減効果が低いことが読み取れる.これより、対策 工法を小型分割化して、施工しやすくすると、劇的 に振動低減効果が落ちるため、大型一体型の対策工 法が望ましい.

Fig 5.3 に中周波数帯における各ケースの低減率 のコンター図を示す.試験結果によると,Casel-1 は 広範囲に低減効果が見られる.Casel-2,Casel-3 と根 入れが浅くなるにつれ,防振材近傍に顕著な低減効 果が見られる.そこで実地盤での施工性を考慮し,根 入れなしの対策工として,真鍮分割壁と鉛バッグ質 量体による防振壁実験を考案し,防振壁としての振 動低減効果を検証した結果が,Case2-1,Case2-2 であ る.A 点のみならず,他の測定点においても振動低 減効果は表れていない.既往の研究においても、分割 壁と一体壁の低減効果の違いには,同じ傾向が見ら れた²⁾.大型一体型の対策工法が望ましい結果であ るが,どの程度の大きさが必要かについては,既往の 研究で防振壁は 430mm 以上の幅が必要との成果が 出ている³⁾.

(d) Case2-1 (e) Case2-2 Fig 5.3 低減率のコンター図(中周波数帯)

6. 結論

地盤振動を効果的に低減する防振壁の根入れ深さ に関する本研究により得られた知見をまとめると以 下のようになる.

環境基準に規定されている距離 12.5m(試験では起 振器に最も近い加速度計)地点では、一体構造の防振 材を地表面に設置したところ、根入れなしにおいて も高い振動低減効果を発揮した.しかしながら、対策 工法を小型分割化すると、振動低減効果が劇的に減 少した.以上より、振動低減効果と施工性を考える と、地表面に、幅 43m 程度の剛な一体型質量体を配 置する手法が推奨される.

-参考文献-

1) 香川崇章:土構造物の模型振動実験における相 似則,土木学会論文集, No. 275, pp. 69-77, 1978.

2) 安藤正樹,豊田浩史:新幹線による地盤振動を効 果的に低減するための振動遮断壁,長岡技術科学大 学修士論文,2017.3

3) 塚本尚規,豊田浩史:新幹線による地盤振動を低 減するための対策工法に関する研究,長岡技術科学 大学修士論文,2018.3