水工学研究室 山下 晃史 指導教員 犬飼 直之

1. 研究目的と背景

毎年多くの海浜事故が発生しており,離 岸流に起因した海浜事故事例も多く報告され ている.犬飼ら¹⁾によると,新潟県内だけで も2001年から2014年の13年間で合計193 件の海浜事故が発生しており,下越地方,特 に新潟東港周辺において海浜事故が多く発生 していることが分かっている.離岸流事故は 毎年発生しているが,発生場所の特定が困難 である.また既往現地調査によって離岸流の 流速や規模などの観測データが幾つか蓄積さ れているが,それは個々の波浪・地形条件下 の離岸流である.

本研究では,波浪・地形条件が変化しても 離岸流の流速,発生間隔を定量的に把握でき る手法を確立することを目的とした.

そのために,まず新潟東港に隣接する網代 浜海岸において現地調査を行い,離岸流の流 速,循環流の発生状況を把握した.次に,現 地調査で得た観測データと調査時の波浪・地 形条件を用いて推算した推算値との比較を行 い,離岸流の流速,発生間隔がどのような要 因に依存するか把握した.

2. 現地調査の概要

現地調査は、平成27年12月9日に新潟県 北蒲原郡聖篭町網代浜海水浴場で実施した. 網代浜海水浴場は、新潟東港に隣接し、カプ ス地形を有し、突堤に囲まれた砂浜海岸であ る.調査時の波浪データには、図-1に示すよ うに、調査場所である網代浜海水浴場より西 方 10 kmに位置する国土交通省港湾局のナウ ファス新潟沖観測所²⁾で観測された波浪デー タを使用した.このときの波浪条件は有義波 高 0.42m,周期 5.6 秒,波向 NW であった. また,図-2 に現地海岸の地形および波浪状況, 調査場所などを示す.調査時には現地海岸の 離岸流場に海面着色剤(写真-2)を散布して離 岸流の可視化を行い,海面着色剤が離岸流に よって拡散する様子を UAV マルチコプター (写真-1)で上空から空撮することで離岸流 の挙動を把握した.

写真-3に作業状況を示す.ここでは,着色した海水が離岸流にのり沖へ拡散している.

図-1調査海域(網代浜海水浴場)位置

図-2 網代海岸の概要

写真-1 空撮用 UAV(無人航空機)

写真-2 離岸流把握器材 (左:海面着色剤,右:流速計)

写真-3 海面着色剤散布状況 (緑色の着色水が離岸流にのり沖へ流出)

 3. 離岸流流速・発生間隔の観測値と推算値 の比較

3.1 現地観測結果

調査の結果,合計5ケースの離岸流の発生 状況を観測することができた.表-1にケース 毎の時間および波浪条件を示す. 全体では高 は 0.38m 程度であり、波高、周期、波向とも 大きな変動は生じなかった.

衣-1	クース毎の時間, 波浪条件	
	時刻,有義波高,周期,波向	
ケース1	11:40, HO. 42m, T5.6s, NW	
ケース 2	13:51, HO. 38m, T5. 7s, NW	
ケース 3	14:00,H0.38m.T5.7s,NW	
ケース 4	14:47, HO. 38m. T5. 7s, NW	
ケース 5	15:06, HO.38m.T5.7s,NNW	
(十立字,) (十立字)		

计边友体

(太文子:循境流を観測)

特に、ケース1およびケース2,ケース4の 調査では,離岸流が海岸付近から沖へ向けて 流出する様子を把握できただけでなく、更に その後向岸流となってまた海岸へ戻るといっ た循環流を形成している状況も把握すること ができた.図-3および図-4に離岸流および向 岸流を含む循環流の発生状況例を示す.

離岸流発生場所はカスプ地形の窪地であり、 調査時には画面左上から波浪が入射しており, 離岸流は画面右上方向の沖へ流出していた.

このケースでは汀線付近から水深 80cm 程 度までは流速が遅く 0.1m/s 程度の流速であ ったが、それよりも深い場所では離岸流の流 速は 0.24m/s 程度となった. また砕波帯の外 側付近で向きを変え並岸流となったが、その 時の流速は 0.47m/s 程度であった. その後向 きを変え向岸流となり、流速は 0.22m/s 程度 であった.

図-3 離岸流・向岸流速の観測値(ケース 1)

図-4 向岸流流速の観測値(ケース 1)

離岸流および向岸流を含む循環流が生成し ていることを確認できたので,これらの流れ がどのような波浪条件や地形条件などで発生 しているのかを把握することとした.

3.2 離岸流流速の定量把握

離岸流流速の推算には,西の手法 3)を参考 にして,海底地形を一様勾配と仮定し,汀線 からの離岸距離 x における離岸流の流速を推 算する式(1)を用いた.

図-4 西の手法³⁾の概念図

$$U_{(x)} = \frac{1}{2} p \left(\frac{W_l}{W_{rip}} \right) \left(\frac{W_l}{x} \right) V \tag{1}$$

ここに, p は分配率(1.0~0), W₁は沿岸流の 幅(m), W_{rip}は離岸流の幅(m), x は汀線から の離岸距離(m), V は沿岸流の流速(m/s) で ある. また, 沿岸流流速 V の推算には, 現地 適合性が高い Komar and Inman⁴⁾の式(2)を 用いた. $V = 1.0\sqrt{gH_b}\sin\alpha\cos\alpha$

ここに, g は重力加速度(9.8m/s²), H_bは有義 波高(m), a は沖からの波の入射角(^o)である. 表-2に,式(2)による離岸流流速の観測値と 推算値の比較を示す.表より,観測値と推算 値はほぼ等しい値となり,推算式からも流速 を推算可能であることを確認した.この結果 から,一様勾配における離岸流流速は,波高, 波の入射角に依存し,沖にいくほど流速は遅 くなる傾向となるといえる.

表-2 離岸流流速の観測値と推算値

	汀線から	流速	流速
	の距離 x	(観測値)	(推算値)
	(m)	(m/s)	(m/s)
ケース1	50	0.11	0.102
ケース2	40	0.17	0.190
ケース 3	18	0.22	0.265
ケース4	30	0.18	0.192
ケース 5	18	0.15	0.166

3.3 離岸流発生間隔の定量把握

現地調査より、3 ケースの循環流の発生状況を観測することができた.図-5 にケース1 での循環流の生成状況を示す.この時の有義 波高は 0.42m,周期 5.6 秒であり、沿岸方向に 57m,岸沖方向に 50m の幅となった.

ここでは,循環流が生成する波浪および地 形条件を定量的に把握することとした.

図-5 観測した循環流(ケース1)

図-6 海浜流系統の概念図

図-6 は海浜流系統の概念図である.図より, 離岸流は Yr という間隔で発生するとされて いる.現地では循環流の幅を把握したが,こ の場合,離岸流発生間隔 Yr は循環流の幅の2 倍となると考えることができる.よって本研 究では Yr は循環流の幅の2倍と定義した.

離岸流の発生間隔の定量把握についての既 往の研究では、佐々木ら 5)や柴崎ら 6が離岸 流の発生間隔を推算する式を考案している. このうち、佐々木らの手法は現地観測データ を用いて回帰分析により得る経験的な式であ り、柴崎らの手法は質量・運動量保存則から 導出した物理的根拠に基づき入射波諸元や海 底勾配などの関係を結び付けた推算式となっ ている.

離岸流発生間隔の推算値の推算には,次に 示す佐々木らの手法による推算式(3)と柴崎 らの手法による推算式(4)を用いて比較をお こなった.ここで,H_bを求める際には,現地 での波高の浅水変形の効果を考慮して,有義 波高の数値から求めた.

$$Y_r = 1.08T^{1.41} H_h^{0.54} (\tan\beta)^{-0.64}$$
(3)

ここに,現地観測で得られた周期 T(s),砕波 波高 H_b(m),海底勾配 tan のである.

$$Y_r = 0.245T \sqrt{gH_b} (tan\beta)^{-1} \tag{4}$$

ここに, T は周期(s), g は重力加速度 (9.8m/s²), H_bは砕波波高(m), tan B は海底勾 配である.

式(3)で推算した結果を表-3に,式(4)で推算 した結果を表-4に示す.式(3)から求めた表-3 では推算値は観測値に比べて若干小さめの数 値となっているが,式(4)から求めた表-4では, とも推算値は観測値とほぼ同様の数値となっ た.これより,特に柴崎らの手法と用いれば 現地海岸での離岸流発生間隔の推算に使用可 能であることが確認できた.また,質量・運 動量保存則から導出した柴崎の推算式により 観測値とほぼ等しい値が推算できたことから, 離岸流発生間隔は波浪諸元及び海底勾配を把 握することで,現地の離岸流の発生間隔の推 算が可能であるといえる.

表-3 観測値と式(3)による推算値の比較

	離岸流発生間隔 Yr		
	観測値(m)	推算值(m)	
ケース1	114		
ケース 2	108	83m	
ケース 4	112		

表-4 観測値と式(4)による推算値の比較

	離岸流発生間隔 Yr		
	観測値(m)	推算值(m)	
ケース1	114		
ケース2	108	103	
ケース 4	112		

4. まとめ

本研究の現地調査により,循環流を可視化 し観測することで循環流の大きさや離岸流お よび向岸流の流速を把握することができた. 西の手法による離岸流流速の推算式より, 現地海岸の流速を推算可能であることを確認 できた.また観測値とほぼ等しい値を推算で きたことから,離岸流流速は波高,波の入射 角に依存するといえる.

離岸流発生間隔の推算は,経験式に基づく 佐々木の離岸流発生間隔の推算式と,質量・ 運動量保存則から導出した柴崎らの推算式を 現地の波浪および地形条件にあわせて修正し 推算式を用いて行なった.

佐々木の手法では,現地の離岸流発生間隔 を精度よく推算可能であることが確認できた. 柴崎らの手法は浅水係数で修正しても若干の 相違が生じるものの,ほぼ等しい値を推算で きた.質量・運動量保存則から導出した宇多 の推算式により観測値とほぼ等しい値が推算 できたことから,離岸流発生間隔は波浪諸元 及び海底勾配を把握することで推算が可能で あるといえる.

本研究により,現地観測時に今後おこなう 必要のある調査項目を明確にすることができ た.流速と発生間隔の推算式を用いれば,海 底勾配を把握している海岸では波浪条件がわ かれば,発生する離岸流の流速を推算でき, 水難事故防止に役立てることが可能であると 考えられる.

参考文献

 大飼直之,江尻義史,大竹剛史,山本浩, 細山田得三(2015),新潟東港周辺におけ る突堤で囲まれたカスプ地形海岸での離 岸流の生成機構について,土木学会,土木 学会論文集 B2(海岸工学),Vol. 71, No.2, I_1687-I_1692.

 2)(独法)港湾空港技術研究所:NOWPHAS (全国港湾海洋波浪情報網)(オンライン)、
 国 土 交 通 省 、
 http://www.mlit.go.jp/kowan/nowphas/.
 2011.

3) 西隆一郎(2005):離岸流の話-安全な海岸
 利用・管理に向けて-,離岸流講演会資料,

(財)水路協会,第十一管区海上保安本部.

- komar, P, D and D, L, Inman (1970): Longshore Sand Transport on Beaches, Journal of Geophysical Research, Vol.75, pp.5914-5927.
- 5) 堀川清司,佐々木民雄,堀田新太郎,桜本 弘(1974):海浜流に関する研究,第15回 海岸工学講演会講演集,pp.347-354.
- 6) 柴崎誠, 宇多高明, 芹沢真澄(2006): 離岸 流の発生間隔の予測式, 海洋開発論文集, vol.22, pp.917-920.