コンクリート研究室 田邊純也

指導教員 下村 匠

1. はじめに

鉄筋コンクリート (RC) 構造の耐久性を損なう 最も重要な問題として,塩化物イオンによる鉄筋 腐食がある.これは,コンクリートに侵入した塩 化物イオンが鉄筋の不動態被膜を破壊することに より鉄筋を腐食させ,腐食生成物によりコンクリ ートひび割れ・剥落を引き起こし,美観や耐力の 低下を引き起こすものである.

一方ステンレス鉄筋は,構成成分である Cr が酸 化することにより,不動態被膜を形成する.その ため,普通鉄筋に比べて高い耐食性を有しており, 腐食性環境下においても使用が期待されている鋼 材である.

しかし、ステンレス鉄筋はその高い耐食性ゆえ 腐食することを想定した研究は実施されてこなか った.したがって、万一ステンレス鉄筋が腐食し たら構造物はどうなるのかということは不明であ る.このことは、ステンレス鉄筋を普及させる上 で解決が不可欠な問題であると考える.

したがって、本研究ではステンレス鉄筋が腐食 した際の RC 部材の変状及び構造性能を明らかに し、普通鉄筋の場合と比較する.

2. ステンレス鉄筋単体の電食試験

ステンレス鉄筋の電食試験は前例がなく未知の ことが多い.したがって,事前の実験により,"電 食によってステンレス鉄筋を腐食状態にできるこ と"及び"クエン酸水素二アンモニウム水溶液によ る除錆の適切性"の2点を明らかにした.

SUS410 φ 13 を 60mm の長さに切り出し電食試 験を実施した.シリーズ I では,クエン酸水素二 アンモニウム水溶液による除錆を実施した.一方, シリーズ II では,電流密度・NaCl 濃度の組み 合わせを増やし、電食試験を行った.

表1にシリーズIの結果を,図1にシリーズⅡ の結果をそれぞれ示した.

シリーズ I の結果, 電食法によってステンレス 鉄筋が腐食状態となることが確認できた.また, ステンレス鉄筋においても, クエン酸水素二アン モニウム水溶液により適切な除錆が行えることが わかった.

また,シリーズⅡの結果,実験を行った範囲で は,腐食因子(NaCl濃度,電流密度)の大小に関 わらず,電食係数が線形関係を示していた.プロ ット点を線形近似した裸状態におけるステンレス 鉄筋の電食係数は 0.897 となった.この結果を普 通鉄筋による電食試験と比較するとやや小さい.

表 1 実験シリーズ Iの結果

	供就体No.1 (NaCl1%)	供試体No.2 (NaCl3%)	供試体No.3 (NaCl6%)
電食終了時(g)	50.15	49.343	51.02
除請処理後(g)	50.11	49.343	51.01
除結量(g)	0.04	0.0	0.01

図 1 事前実験(シリーズⅠ, Ⅱの実験結果)

3. ステンレス鉄筋を用いた RC 梁供試体の電食試験

事前実験の結果を参考にして、ステンレス鉄筋 を用いた RC 部材における電食試験を実施した. なお、実験結果を普通鉄筋の場合と比較するため に供試体諸元や測定方法などは、既往の研究であ る JSCE331 委員会の BMT (Bench Mark Test) 試験を踏襲した

3.1 供試体諸元

供試体諸元を図2に示す.曲げ耐荷性状に着目 するため、スターラップを100mm 毎に配筋しせ ん断破壊しないようにした.また、鉄筋端部を絶 縁処理し、スターラップの結束に結束バンドを使 用するなど、できるだけ主鉄筋のみが腐食するよ うにした.

図 2 RC はり供試体

3.2 実験方法

事前実験で得た結果及び、田森(1988)の普通 鉄筋の電食試験の実験結果から、表2の目標腐食 率を設定し、電食試験を実施した.なお、用いた 回路は BMT に準拠したものとする.

表 2 電食試験パラメータ

供試体No.	目標腐食率[%]	電流密度[g/mm]
No.1	0	
No.2	7	
No.3	15	2.378
No.4	20	
No.5		

また,電食後は腐食ひび割れ幅を測定し,載荷 試験後はコンクリート中より鉄筋を取り出し,腐 食形態の観測,および質量減少率・断面減少率・ を BMT に従って測定した.

3.4 実験結果

以下に本実験の測定結果と BMT における普通 鉄筋の測定結果を比較した.

(1) 腐食形態

ステンレス鉄筋と普通鉄筋のそれぞれの腐食形 態(等曲げ区間)を写真1,2にそれぞれ示した.

写真1では、孔食が広範囲に表れていることが わかる.これは、ステンレス鉄筋の不動態被膜が 強固なため、塩化物イオンによって破壊された箇 所が限定されたことが原因だと考えられる.

写真 1 電食後のステンレス鉄筋 (質量減少率 24.2%)

(2)断面減少率と質量減少率の関係

図3に質量減少率と平均断面減少率の関係を示 す.ステンレス鉄筋は普通鉄筋と比較して,質量 減少率に伴う断面減少率小さいことが読み取れる.

図 3 質量減少率と平均断面減少率の関係

この原因は、ステンレス鉄筋の腐食形態が"孔 食"であるため、ノギス測定による断面の減少率 には直接的に現れない質量の減少があるためだと 考えられる.このため、断面減少量に比べて質量 減少量が大きい結果となったと考えられる.

(3) 腐食ひび割れ幅

図4に腐食ひび割れ幅と平均断面減少率の関係 を示す.この結果から、普通鉄筋(BMT)と比較 して本実験の断面減少率に伴う腐食ひび割れ幅が 大きいことがわかる.この要因として考えられる のは,腐食形態が孔食であること及び,供試体作 成精度の問題の2つである。前述したようにステ ンレス鉄筋には、腐食形態として孔食が広範囲に 確認された. 孔食の場合, 同程度の腐食量であっ たとしても鉄筋径の減少量は小さい.したがって、 同じ鉄筋断面減少率で比較した場合,鉄筋の周辺 に腐食生成物がより多く発生することにより、よ り大きな膨張圧が生じ、ひび割れを増大させたと 考えられる.また、供試体作成精度の問題では、 打設などの際に鉄筋の配筋位置に偏りが生じ一方 のかぶり幅が小さくなってしまった供試体がある. BMT に用いる供試体は小さいため,供試体作成精 度が結果に及ぼす影響は大きいと考えられる.

図 4 平均腐食ひび割れと平均断面減少率の関係

ステンレス鉄筋を用いた鉄筋腐食 RC 梁の載 荷試験

ステンレス鉄筋を用いた RC 部材を腐食促進し た供試体において載荷試験を実施することで,腐 食した際の構造性能を明らかにした.試験方法は, 普通鉄筋と比較するために BMT に準拠した.

4.1 実験概要

等曲げ区間 280mm, せん断区間 490mm, 支点 間 1260mm とし, 対称二点一方向載荷を行う. な お, 載荷は供試体が破壊するまで行う. 測定項目 は, スパン中央変位・載荷点変位(2箇所)・支点 変位(2箇所)及びスパン中央上縁のコンクリー トひずみとした.

写真3 載荷試験機の様子

4.2 実験結果

(1)荷重-中央変位関係

図 5 質量減少率 0%

図 6 質量減少率 24.2%

これらの結果を比較すると,鉄筋の質量の減少 率が大きいほど耐荷性能が低下する傾向がステン レス鉄筋,普通鉄筋の両者において確認できる.

(2) 破壊形態

BMT における破壊モードは, いずれも曲げ引張 破壊または鉄筋破断であったが,本研究では健全 供試体以外は鉄筋降伏後の定着部破壊となった. これは,大きな腐食ひび割れが定着部付近まで発 生していたことと,定着部付近のスターラップの 腐食ひび割れにより載荷時に定着部破壊が誘発さ れたためと考えられる.写真4に定着部の破壊の 様子を示した.

写真 4 定着部破壊の様子

(3)質量減少率,断面減少率と終局荷重比の関係 図7及び図8に終局荷重比と最大断面減少率, 質量減少率のそれぞれを示した.

図 7 より鉄筋の断面積減少率を基準にすると普 通鉄筋に比べて小さくなる傾向を示した.この原 因は,孔食のため実際の鉄筋の断面減少に比べて 断面の減少量が低く見積もられたためと考えられ る.図8より質量減少率を基準に整理すると,普 通鉄筋の結果と近くなるが,それでもまだステン レス鉄筋の方で耐力低下が大きい傾向があるのは, コンクリートの圧縮破壊前に鉄筋定着部の破壊に より終局となったためと考えられる.

図 7 終局荷重比 - 最大断面減少率(支点間) 関係

図 8 終局荷重比-質量減少率関係

5. まとめ

- ステンレス鉄筋においても電食法により、腐 食状態となることがわかった。
- 破壊モードが鉄筋降伏後の定着部破壊となった.この原因は腐食ひび割れが著しかったことと、スターラップの腐食ひび割れが発生していたことによる.絶縁を施したにも関わらずスターラップが腐食した原因は不明である.
- ステンレス鉄筋の電食試験では孔食が生じ、
 マクロな断面の減少率に比べて質量減少率が
 大きい.