地盤工学研究室 黒橋 群

指導教員 杉本光隆

玉井達毅

1. はじめに

SENS で施工されたトンネルでは、未固結な一次覆工コ ンクリート(以下,一次覆工)中の内型枠がシールド機から 離れるに従って浮き上がる現象が確認されている.これ は、内型枠が未固結な一次覆工による浮力によって、上 方に剛体変位したためと考えられる¹⁾.さらに、一次覆 工は内型枠が浮き上がった状態で打設圧力を受けながら 硬化した後に、地山からの有効土圧を受ける.この有効 土圧は、切羽前方変位やトンネル掘削面と内型枠や一次 覆工との相対変位により減少したり、地山が自立し0と なっていることも考えられるが、現行の解析法ではこう した現象を表現できない.

そこで本研究では、一次覆工の挙動に着目し、覆工の 剛体変位、内型枠の脱型後も含めた一次覆工の硬化過程、 主働側の土圧や地山の自立が表現可能な、SENSの荷重条 件と施工過程を考慮した三次元解析モデルを開発し、 SENS で2例目の施工となった北海道新幹線、津軽蓬田ト ンネルの現場計測データを用いて同手法の妥当性を検証 した.

2. 解析モデル

2.2 解析モデル概要

本研究の3次元解析モデルの概要を図1に示す.本解 析モデルでは、地盤を覆工全周に配置させた法線方向地 盤ばね、内型枠と一次覆工を一体としたシェル要素,覆 工のリング間継手を軸方向ばねとせん断ばね、覆工間継 手を回転ばねで表現した.また、シールドマシンテール 部と覆工の競りを表現するためにテールばねを、内型枠 と一次覆工との周面摩擦を表現するために、一次覆工が 固体状態の区間には、覆工と地盤ばねの間にジョイント

要素を設定した.覆工に作用させる荷重は,先端のシェ ルヘジャッキカ,コンクリート液体区間でコンクリート 打設圧,固体区間で土水圧である.地盤ばねの性状には, 周辺地盤が比較的硬質な地山であることから,切羽前方 変位やトンネル掘削面と覆工の相対変位による土圧減少, 地山の自立を評価できる地盤反力曲線²⁾を適用した.

2. 2 逐次解析

(1) 一次覆エコンクリートの硬化過程

一次覆工が固体状態の場合,一次覆工と内型枠が一体 となって土水圧に抵抗する.そこで,覆工を一次覆工と 内型枠を一体とした合成シェル要素としてモデル化し, ヤング率を経時的に変化させ,一次覆工コンクリートの 硬化過程と内型枠の脱型を表現した.なお,コンクリー トのヤング率は、コンクリート打設後経過時間に応じた ヤング係数(実験式)を用いて算定した.

(2) 逐次解析

図2は逐次解析のイメージを示したものである.内型 枠1リング分の掘進・組立時間を1ステップとして,施 エステップ毎に新たな内型枠を先端に設置し,コンクリ ート打設圧とテールばね,地盤ばねを前方に1リング分 移動させ,各々のシェル要素に,その施工状態に応じた 剛性を与えた.

3. パラメータスタディ

3.1 解析ケース

地盤ばね特性の違いが一次覆工に与える影響は大きい. そこで,**表1**に示すパラメータを変化させて解析を実施 した.ここで,初期変位とは,初期トンネル掘削面と 次覆工・内型枠設置時の掘削面との距離である.

解析対象は、津軽蓬田トンネルで実施した大土被り区間での計測断面(土被り約90m)とした.

3.2 解析結果

図3に、一次覆工の脱型前後における鉛直剛体変位

図2 逐次解析

(+:上向き),軸力(+:圧縮),曲げモーメント(+:負曲 げ),を示す.なお,用いたパラメータは,**表**1中の赤で 示した.これらより,以下のことがわかる.

(1) 一次覆工の変位

内型枠の脱型後は、脱型前と比較し法線方向内側への 変形が進行する.これは、内型枠の脱型に伴って覆工の 剛性が低下するためである.計測値も同様の傾向が見られ、解析値は計測値の傾向を表現できているといえる.

(2) 軸力

内型枠の脱型後は、軸力は減少傾向を示す.これは、 覆工の法線方向内側への変形が進行することによる有効 土圧の低下と、一次覆工の軸剛性の低下によるものと考 えられる.

(3) 曲げモーメント

内型枠の脱型後は,覆工の曲げ剛性の低下に伴って曲 げモーメントも減少傾向を示す.計測値も同様の傾向が 見られ,解析値と計測値の傾向はよく一致していること がわかった.

図3 一次覆工の変位・断面力(脱型前後)

b) 軸力 (kN/m)

c) 曲げモーメント (kN-m/m)

3.3 軸力・曲げモーメントの時間変化

図4に、トンネルのスプリングラインにおける軸力お よび曲げモーメントの解析値、現場計測値、等価軸剛性、 等価曲げ剛性の時間変化を示す.用いたパラメータは、 図4の右に示した.この図より、軸力と曲げモーメント は、内型枠の脱型前にピーク値をとり、脱型後に低下す る傾向を示している.解析値も同様の傾向を示しており、 計測値を表す解析条件は *k*=100MN/m³、*K*_{h0}=0.75~1.0、 *u*_{init}=5mm である.

4 まとめ、今後の展開

一次覆工の挙動について、内型枠の脱型後に至るまで 把握・表現することができた.今後は、他の計測対象断 面での解析による本モデルの妥当性検証、地表面への影 響も考慮したモデルへの改良などを考えていく.

1) 玉井達毅,阿部広明,杉本光隆,田中淳寛,水原勝由,:シール ドを用いた場所打ち支保システムの時系列三次元逐次解析手法に よる内型枠挙動の解明,土木学会論文集 F1, Vol.70, No.3, I-17-I-28, 2014.

 2) 岡崎麻里,杉本光隆, Aphichat Sramoom:地盤反力曲線を用いた 骨組み構造解析によるトンネル覆工の解析法,土木学会論文集 C, No.1/V-67, pp.61-77, 2011.

