ASR 劣化したプレテンションホロー桁のせん断耐力に関する実験的検討

指導教員 丸山 久一 指導教員 田中 泰司 コンクリート研究室 仲澤 拓巳

1. はじめに

近年, プレストレストコンクリート(以下, PC)橋梁においてアルカリ骨材反応(以下, ASR)を伴う劣化事例が報告されており、その 損傷メカニズムの解明や損傷評価法の確立が 求められている.特に, PC 箱桁橋や PC ホロー 桁橋においては,写真-1 に示すように, ASR に伴い,橋梁軸方向にひび割れが生じる劣化事 例が報告されている.このような水平ひび割れ の発生が進行した場合,重ね梁化によって部材 の耐力や剛性が低下する恐れがある。また、引 張鋼材への付着伝達力も低下するために, 定着 部への負担が増大し, 定着破壊が生じる可能性 も危惧される. そこで本研究では, ASR 劣化し た PC 部材のひび割れの進展状況の確認を行う とともに、ASR によるコンクリートの劣化が部 材耐荷性能や耐荷機構に与える影響を実験的 に検討することとした.

ASR は骨材の膨張反応であるので, ASR に伴って発生するひび割れの諸特性は,骨材寸法に依存していると考えられる.その場合,供試体寸法が小さいと,実構造物の寸法の場合とは異なる結果が得られるおそれがある.

写真-1 ASR による軸方向ひび割れ

また,付着や定着に関する性能は,構造細目の 形状や寸法に大きく依存するので,なるべく実 構造物に近いもので検討するのが望ましい.こ れらを勘案して,本研究では,比較的大型のプ レテンションホロー桁を作製し,ASR 促進劣化 を行ったうえで,曲げせん断力を加えて,曲げ せん断性状の確認を行った.

2. 試験体概要

試験体の寸法を図-1 に示す. 試験体はプレ テンション方式によるホロー桁で, JIS 規格 (JIS A 5313) に適合した桁長 15m 用のプレテンショ ン方式橋桁の断面を再現したものである. PC

図-1 試験体寸法(左:側面図,右:a-a 断面図)

表-1 コンクリート配合

插粨	W/C (%)	s/a (%)	アルカリ量 (kg/m ³)	単位量(kg/m³)						
作里天只				W	С	S	G	Ad		NaOH
ASR	40	46	9.0	185	463	756	861	13.9 (SP8HU)	3.24 (303A)	11.6
健全	39.5	35.5	0	154	390	622	1189	3.90		0

より線は7本より15.2mm (SWPR7BN),スタ ーラップは D10 (SD295)を使用した. 試験体 は ASR を促進させる区間 (1990mm)と, ASR が生じない健全区間 (3110mm)とに分けて打 設を行った. ASR 促進区間においては,組み立 てたコンパネをコンクリート内に埋め込むこ とで中空形状とした.また,破壊領域を ASR 促進区間に限定するため,健全側は中実断面と してせん段耐力を高めた.

試験体にプレストレス力を導入するため、 試験 体の打設後約 10 日間, 封緘養生を行い, 試験 体打設時に採取した円柱供試体の圧縮強度が 30N/mm²に達していることを確認した後、PC より線の緊張力解放により、試験体にプレスト レス力を導入した. プレストレス力は, PC よ り線1本あたりの設計荷重作用時における許容 引張応力度である 1110N/mm² に断面積 138.7mm²を乗じた 154kN とし, トータルで 2310kN 導入した. プレテンション力の導入後 は、ASR 膨張を防ぎながら強度を十分に発現さ せる目的で気中養生を行った.全ての試験体の 打設が完了した後, ASR 促進養生を同時に開 始した.ASR 促進養生は、ASR 促進区間のみで 行い、健全区間においては気中養生を継続した. 試験水準を表-2 に示す.載荷試験用の試験体 は計3体作製した.試験因子はコンクリートの 膨張量とし、自由膨張量で 0µ, 2000µ, 3500µ, 4500μを試験水準とした. 自由膨張量 0μの水準 では、全区間で健全なコンクリートを使用した. 自由膨張量測定用の供試体には、@100×400mm の円柱供試体を使用した.供試体数は3体とし

表-2 試験水準

No.	使用骨材	自由膨張量	名称
1	反応性骨材	2000μ	A-2000
2	反応性骨材	3500μ	A-3500
3	反応性骨材	4500μ	A-4500
4	非反応性骨材	_	Н

た.供試体端部にゲージプラグを埋め込み,ダ イヤルゲージ法により膨張量測定を行った.

3. 使用材料

ASR 試験体と健全試験体のコンクリートの 配合を表-1 に示す.本研究では、早期の強度 発現のため、セメントには早強ポルトランドセ メントを用いた.ASR 反応を促進させるため, コンクリートには水酸化ナトリウムを Na₂O_{en} で 9.0kg/m³添加した. 細骨材には非反応性骨材 (信濃川産, 表乾密度 2.64g/cm³) を, 粗骨材に は反応性骨材(姫川産,表乾密度 2.58g/cm³)を 用いた. 粗骨材の化学法 (JIS A 1145) の試験結 果は、 アルカリ濃度減少量 Rs が 300mmol/l, 溶 解シリカ量 Sc が 350mmol/l であり, 無害でない と判定された.一方,モルタルバー法(JIS A 1146) による材齢 6 か月時点での膨張量は 520µ であ り、無害と判定されたものの、アルカリ量をセ メント重量の 1.5% Na₂O_{eg} とした場合 (JIS の規 定値は 1.2%) には, 膨張量は 3300 μ となり, 高 い反応性を示した.また,岩石薄片の偏光顕微 鏡観察の結果,反応性鉱物として多量のクリス トバライトとトリディマイト, 少量のオパール, ガラスを含有していることが確認された.

図-2 埋め込みアングル・ひずみゲージの取り付け位置と載荷位置

4. 促進養生方法

本研究で作製した大型の試験体ではデンマ ーク法のように、高温の水中に試験体を浸漬す る促進養生方法を用いるのは困難である.そこ で本研究では、図-3 に示すように、試験体の ASR 促進区間をビニールシートで覆い、水槽に 溜めた水の温度を投げ込みヒーターにより上 昇させ、蒸気により試験体を湿潤・高温状態を 保つ方法を採用し、促進養生を行った.水温を 約55℃となるように温度調節を行うことで、ビ ニールシート内は35~40℃に保たれた.

5. プレテンションホロー桁の膨張量測定

プレテンションホロー桁の膨張量測定は試 験体側面で行い,図-2における位置・方向で 測定した.膨張量測定は,試験体表面に埋め込 んだステンレス製アングルを約 1mのノギスで 測定することで行った.アングルは試験体両側 面に設置し,ASR 促進区間・健全区間それぞれ における高さをパラメータとし,膨張量測定を 行った.いずれの試験体においても,健全部で は 600~700μ程度の収縮が生じていた.この収 縮は,乾燥収縮とプレストレスによるクリープ に起因するものと考えられる.ASR 促進部分の ひずみ測定結果は,試験体によって異なってい るものの,PC 鋼材が集中している下側(A-1) の収縮量は大きく,鋼材による拘束が比較的少

図-3 促進養生のイメージ図

ない上側(A-3)の収縮量が少なくなる結果 となった.試験体によるばらつきはあるものの, ASR による膨張変形は大きくないという点で は共通しているといえる.これは,PC より線 による部材軸方向の拘束力が大きかったため と考えられる.

6. 円柱供試体の自由膨張量測定

自由膨張量測定用の円柱供試体は、プレテンションホロー桁と同条件下にて促進養生を行った. 促進養生開始から、円柱供試体の膨張がすぐに発生し、促進開始約 60 日で膨張量が 2000µ を超えた.さらに、促進開始約 120 日で 3500µ,約 180 日で 4500µ に到達した. 円柱供試体が載 荷試験水準の自由膨張量に達した時点で、載荷 試験を行うプレテンションホロー桁の促進養 生を終了し、載荷試験を行った.

7. ASR 劣化による試験体のひび割れ状況

ASR の進行によりプレテンションホロー桁 に生じたひび割れ状況を図-4 に示す. ひび割 れ図は、試験体側面と上面の展開図で、ASR 促 進区間(1990mm)のみ示している.いずれの 試験体においても, 亀甲状のひび割れを確認し た. また, ASR 促進期間が長くなるにつれて, ひび割れの数は増加する傾向にあった. ひび割 れは PC 鋼材による拘束が少ない部材端部や上 側に多く発生し、PC 鋼材が集中して配置され ている下側では比較的少なかった.これは、図 -4に示すプレテンションホロー桁の膨張量 の傾向と同様であり、PC より線による拘束が 比較的少ない試験体上側においてひび割れが 発生したものと考えられる. 自由膨張量 2000μ の試験体の場合は、試験体上側に配置された PC より線に沿ったひび割れが確認された. さらに 自由膨張量 3500 μの試験体の場合は、試験体下 側に配置された PC より線に沿ったひび割れも 発生していた. ただしこの PC より線に沿った ひび割れのひび割れ幅は0.06~0.08mmと比較的 小さく,写真-1にみられるひび割れのように, 部材の重ね梁化などが危惧されるレベルには 至っていなかった. 自由膨張量 4500μ 試験体に ついては、他の ASR 試験体にみられたような 大きなひび割れは確認できなかったことから, ASR 促進養生不足であったと考えられる.

8. 載荷試験の概要

載荷試験は図-2 に示すように支間 4500mm の2点単純支持で,幅 100mm,高さ 30mmの載 荷板を用いて ASR 促進区間にてせん断破壊す るように行った.載荷点位置は,有効高さ d=530mmに対して,a/d=3 (a=1590mm)となる ように決定した.試験項目は,試験体のせん断 耐力,載荷によるひび割れの進展状況,破壊モ ードとした.載荷試験中に適宜,ひび割れの観 察を行った.

9. 載荷試験結果

載荷試験による荷重-中央変位関係を図-5 に示す.自由膨張量 2000µの試験体のせん断耐 力は 1369kN, ピーク時の変位は 21.1mm であっ た.自由膨張量 3500µの試験体のせん断耐力は 1174kN, ピーク時の変位は 20.1mm であった. 自由膨張量 4500µ の試験体のせん断耐力は 1470kN, ピーク時の変位は 24.1mm であった. 健全試験体のせん断耐力は 1213kN, ピーク時 の変位は 13.1mm であった.

また,載荷試験後に試験体から抜き出したコ ンクリートコアによる圧縮強度,弾性係数試験 の結果を図-6, 図-7 に示す. ASR 供試体の 圧縮強度は 53~65N/mm²の範囲であり, ASR の 進行による低下は小さかった.一方,弾性係数 については、ASR の進行による低下が顕著にあ らわれた. ここで, 自由膨張量 4500μ 試験体に ついては、弾性係数測定結果より ASR 促進養 生不足であったと推察される.弾性係数の近似 直線による推定の結果,自由膨張量 4500 μ 試験 体の実際の膨張量は自由膨張量 600µ 程度であ ったと推測した.載荷試験結果より,試験体の 圧縮強度を全て自由膨張量 2000 μ 試験体のもの に補正し,最大荷重についてまとめたものを図 **-8**に示す.図より,ASR の進行により試験体 のせん断耐力は低下傾向にあることを確認し た.

10. 載荷試験によるひび割れ状況

載荷試験により発生したひび割れを図-9 に 示す.この図では ASR 促進区間の支点から試 験体中央までのひび割れ状況を示している.青 色の線は載荷初期のひび割れ,緑色は破壊直前 までのひび割れ,赤色は破壊後のひび割れ,灰 色は ASR によるひび割れを示す.健全試験体 については,曲げひび割れが先行し,曲げひび 割れの数も多くみられた.一方で,自由膨張量 2000µ ならびに 3500µ 試験体については,せん 断ひび割れが先行し,曲げひび割れはほとんど 発生しなかった.4500µ 試験体については,曲 げひび割れが先行したが曲げひび割れの数は 少なかった.特に,3500µ 試験体については, 破壊に至るまでせん断区間に曲げひび割れが 生じなかった.この原因のひとつとしては,

図-8 補正計算後の最大荷重

ASR 膨張によってケミカルプレストレスが追加的に試験体に導入され,その結果,曲げひび割れ荷重が増加したことが考えられる.ただし, ASR による部材軸方向の膨張が明確には計測されていないので,詳細については今後も検討を要する.

11. 試験体の破壊モード

健全試験体については,斜め引張破壊が発生 した.ウェブ部において,複数の斜めひび割れ が進展することによりウェブのせん断伝達機 構が失われ,荷重が低下したと考えられる. ASR 試験体については,いずれもせん断圧縮破 壊が発生した.試験体に斜めひび割れが発生し た後,載荷点近傍のひび割れが圧縮部のコンク リート強度に何らかの影響を与えたことによ り,スターラップ降伏前にせん断圧縮破壊が生 じたものと考えられる.

12. まとめ

- ASR により、試験体上側および下側に配置 された PC より線に沿うひび割れが確認さ れた.
- 2) ASR の進行により,試験体のせん断耐力は 低下傾向を示し,自由膨張量 3500µ 試験体 は健全試験体に対し約1割低下した.
- 試験体のコンクリートコアの弾性係数を測 定することにより、構造物のせん断耐力を 推定できる.
- ASR 試験体は、いずれもせん断圧縮破壊が 発生した. ASR によるひび割れが圧縮部コ ンクリートに影響を及ぼした可能性があ る.

(c) 自由膨張量 4500 µ

 \wedge

