PC 鋼材破断検出に向けた音響モニタリングシステムの開発

長岡技術科学大学 構造研究室 上原繁輝

指導教員 長井正嗣

1.はじめに

周知の通り,橋梁の老朽化が急速に進行している.研究対象の妙高大橋においても,同一断面で 多くのPC鋼材の破断が確認された.そこで,PC 鋼材の破断を合理的にモニタリングする方法が 求められている.著者らは,これまで,PC橋のPC 鋼材破断検出に向けて音響モニタリングシステ ムの開発を進めている¹⁾.本報では,音源位置同 定を目的とした取り組みについて報告する.

2. 音響モニタリングシステム概要

図1に,開発を進めている音響モニタリング システムを示す.本システムは,弾性体中を伝 播する音を収録する入力部,計測プログラムの 動作と入力された信号の解析を行う計測・解析 部,インターネットに接続する通信システム部 から構成される.本システムに改善を加えた点 について述べる.

2.1 多チャンネル化

PC 鋼材破断音の音源位置同定を可能とする ため,多チャンネル接続可能な NI 製 4 チャン ネル A/D コンバータの NI9225を用いた(図2). 電圧計測タイプ,分解能 16 ビット,サンプリン グレートは 100kS/秒である.また,PC とのデ ータ通信は USB ケーブルで行い,電源供給はバ スパワーである.

2.2 計測データの蓄積・リアルタイムでのデータ取得

ネットワーク環境が十分に整備されていない 現地で,リアルタイムでのデータ取得に向けて, ネットワーク構成とデータ保存法について検討 した.

無線ルータ

本検討では,通信可能エリアとデータ通信速 度を総合的に勘案して,モバイル無線ルータを 使用することとした(図3).妙高大橋における

図1 音響モニタリングシステム

図2 A/Dコンバータ 図3

図3 無線ルータ

図4 妙高大橋 通信エリア

通信速度のベストエフォートは,下り(受信時) 最大 42Mbps,上り(送信時)最大 5.8Mbps で ある.通信エリア(2012年12月)を図4に示す. オンラインストレージ

オンラインストレージとは,クラウドコンピ ューティングの技術の一つであり,ネットワー ク上のサーバにデータを蓄積するサービスであ る.クライアントソフトを,現場の PC と遠隔 地の PC の双方にインストールすることで,ネ ットワークを介してデータを同期し,ローカル ドライブやフォルダに保存されたデータをアッ プデートまたはダウンロードすることが可能と なる.このオンラインストレージにデータを保 存することで,遠隔地で現場データの取得が可 能となる.本システムでは,データ容量の圧縮 のために,計測・解析プログラムから出力され た時刻歴波形を JPEG 形式の画像データとして オンラインストレージに保存する.

遠隔操作プログラム

ネットワークを通じて,現地に設置した PC を外部から制御するために,フリーの遠隔操作 プログラムを利用した.利用した遠隔操作プロ グラムは,非営利目的の運用に対して無償公開 しているソフトウェア"TeamViwer"である.こ のソフトウェアを現地大容量かつ電源供給がバ スパワータイプとし,本システムで採用した外 付 HDD の記録容量は 2TB である.これにより 遠隔地から現地の PC を直感的に操作すること が可能となる.また,データのアップデート,

図5 遠隔モニタリングプログラム

ダウンロードも可能である .(図5). 計測の手順

- (1) 現地に設置した PC で計測を開始する.
- (2) 指定された時間で計測を実施する.計測デ ータの時刻歴波形とそのフーリエ振幅が表 示され,それらの画像データが無線ルータ を介してオンラインストレージに JPEG 形 式で保存される.計測データは TDMS 形式 で,外付け HDD に保存される.
- (3) 計測を終了しない場合は (2)~(4)を繰り返し,継続的にデータが蓄積される.
- (4) 遠隔地の PC で,オンラインストレージに
 保存された画像データを定期的にチェック
 し,変状の有無をモニタリングする.
- (5) 変状が発見された場合,遠隔操作プログラムを利用して,外付 HDD に保存された計測データをダウンロードする.データの詳細分析から,状態評価を行う.
- 3. 音源位置同定手法
- 3.1 定式化

コンクリートマイクで,コンクリート内部を 伝播する音の発生位置を同定するために,3次 元の音源位置同定手法の定式化を行う.ここで は,音源と各マイクの距離が,弾性波速度と各 マイクにおける音の検出時刻の積に等しいこと を利用する.未知数を音源の3次元座標(x_0, y_0, z_0)と音の発生時刻 t_0 とする.また,既知数を 弾性波速度 V,マイクの3次元座標(x_i, y_i, z_i), マイクにおける音の到着時刻 t_i とする($i = 1 \sim N$), N はマイク数である.

いま,マイク *i* について,音源とマイク間の 距離について以下の関係式が成立する.

 $\sqrt{(x_i - x_0)^2 + (y_i - y_0)^2 + (z_i - z_0)^2} = V(t_i - t_0)$ (1) しかし,計測には不確定性があることから,以 下の残差は一般に0とはならない.

$$r_{i} = \sqrt{\left(x_{i} - x_{0}\right)^{2} + \left(y_{i} - y_{0}\right)^{2} + \left(z_{i} - z_{0}\right)^{2}} - V\left(t_{i} - t_{0}\right)$$
(2)

マイク $i = 1 \sim N$ について上式を計算し,残差の 二乗和が最小となるように,未知数(x_0, y_0, z_0), t_0 を決定する.ただし,上式の残差は未知数に ついて非線形関数であることから,収束計算を 伴う非線形最小二乗法を行う必要がある.まず, 未知数(x_0, y_0, z_0), t_0 を仮定し,未知数の補正 量($\Delta x_0, \Delta y_0, \Delta z_0$), Δt_0 を次式から求める.

$\left[\sum \frac{\partial r_i}{\partial x_0} \frac{\partial r_i}{\partial x_0}\right]$	$\sum \frac{\partial r_i}{\partial x_0} \frac{\partial r_i}{\partial y_0}$	$\sum \frac{\partial r_i}{\partial x_0} \frac{\partial r_i}{\partial z_0}$	$\sum \frac{\partial r_i}{\partial x_0} \frac{\partial r_i}{\partial t_0}$	$\left[\sum r_i \frac{\partial r_i}{\partial x_0}\right]$
$\sum \frac{\partial r_i}{\partial y_0} \frac{\partial r_i}{\partial x_0}$	$\sum \frac{\partial r_i}{\partial y_0} \frac{\partial r_i}{\partial y_0}$	$\sum \frac{\partial r_i}{\partial y_0} \frac{\partial r_i}{\partial z_0}$	$\sum \frac{\partial r_i}{\partial y_0} \frac{\partial r_i}{\partial t_0} \left \begin{bmatrix} \Delta x_0 \\ \Delta y_0 \end{bmatrix} \right $	$\sum r_i \frac{\partial r_i}{\partial y_0}$
$\sum \frac{\partial r_i}{\partial z_0} \frac{\partial r_i}{\partial x_0}$	$\sum \frac{\partial r_i}{\partial z_0} \frac{\partial r_i}{\partial y_0}$	$\sum \frac{\partial r_i}{\partial z_0} \frac{\partial r_i}{\partial z_0}$	$\sum \frac{\partial r_i}{\partial z_0} \frac{\partial r_i}{\partial t_0} \begin{bmatrix} \Delta z_0 \\ \Delta t_0 \end{bmatrix}$	$\sum r_i \frac{\partial r_i}{\partial z_0}$
$\left[\sum \frac{\partial r_i}{\partial t_0} \frac{\partial r_i}{\partial x_0} \right]$	$\sum \frac{\partial r_i}{\partial t_0} \frac{\partial r_i}{\partial y_0}$	$\sum \frac{\partial r_i}{\partial t_0} \frac{\partial r_i}{\partial z_0}$	$\sum \frac{\partial r_i}{\partial t_0} \frac{\partial r_i}{\partial t_0} \right]$	$\left[\sum r_i \frac{\partial r_i}{\partial t_0}\right]$

未知数の補正量 (*Δx*₀, *Δy*₀, *Δz*₀), *Δt*₀が, 収束 条件を満足するまで,未知数の更新を行い,上 記の計算を繰り返すことで音源位置を得る. 3.2 検証実験

前節で示した音源位置同定手法の妥当性を検 証するために室内実験を実施した 本実験では, 基礎実験として,2次元の音源位置同定を行う. このため未知数は音源の2次元座標(x_0, y_0)と 音の発生時刻 taとなるので,最低3台のコンク リートマイク用いれば未知数の同定が可能とな る.図6に示すように180mm厚のコンクリー ト床の上に,4 台のコンクリートマイクを 2m×2mの正方形の頂点に設置し,養生テープを 用いて固定した、提案する音源位置同定手法で は、マイクの座標値は既知でなければならない ため,座標の原点をこの正方形の中央と定め, 各コンクリートマイクの座標を (-1,-1)(1, -1),(1,1),(-1,1)とした.ただし,単位は メートルである.本研究では,この 2m×2m の 正方形の領域での音源同定を目的とする また, PC 鋼材の破断による音の発生は,インパルス

図6 室内実験概要

図7 検出点の定義

データNo.	マイクNo.	伝播速度[m/s]	平均速度	マイクの座標	打撃位置との距離 [m]
1	1	3802		(-1,-1)	1.521
	2	4658	1257	(1,-1)	0.559
1	3	3957	4237	(1,1)	1.820
	4	4610		(1,-1)	2.305
	1	4224		(-1,-1)	1.521
2	2	4658	4170	(1,-1)	0.559
Z	3	3957	4170	(1,1)	1.820
	4	3841		(1,-1)	2.305
3	1	4752		(-1,-1)	1.521
	2	5590	4620	(1,-1)	0.559
	3	4333	4029	(1,1)	1.820
	4	3841		(1,-1)	2.305

表1 弾性波速度

ハンマーによる打撃で模擬することにし,打撃 点の座標を(0.5,-0.75)とした.本実験のサン プリング周波数は50,000Hzとし,計測回数を3 回とした.計測時の気温は29.2,コンクリー トの表面温度は27.8 であった.

3.3 弾性波速度の計測

定式化で示したように,音源位置同定で用い るコンクリート内部を伝播する弾性波速度Vは, 既知である必要がある.このため,弾性波速度 は事前計測(キャリプレーション計測)から算 出することとした.ハンマーの打撃位置と各コ ンクリートマイクの直線距離を,各コンクリー トマイクが音を検出する時刻t_iとハンマーの打 撃時刻の差で除して弾性波速度を算出する.こ の算出した弾性波速度の平均を用いて位置同定 の解析を行う.

本実験の分析では,室内実験で計測された時 刻歴波形における立ち下がり点を音の検出時刻 *t_iとした*.図7に,この立ち下がり点の具体的 な読み取り方法を示す.図7における赤,黒, 青の波形は各マイクを,水色の波形はインパル スハンマーの時刻歴波形を示している.インパ ススハンマーの打撃により,水色の波形が途中 で急変化していることがわかる.その後,時間

をおいて赤,青,黒の各マイクの波形が変化を している.この変化点が,打撃音の各検出点と なる、検出点とノイズの区別をするため、以下 のようにして検出点を定義した.まず,無音の 状態でマイクが出力するノイズの電圧値の最大 値と最小値を事前に調べ,その範囲を超える電 圧値を基準とする.この基準となるノイズでな い電圧値変化点の1つ前の時刻を読み取り,検 出点とする.以上の方法から算出された弾性波 速度 V の結果を表1に示す.同定された弾性波 速度を比較すると,最大で459m/sの差がある. この原因としてデータの読み取り誤差がある. いま,時刻歴波形の読み取りデータが1つずれ た場合を考える.サンプリング周期は50,000Hz であるため,時刻の誤差は20µsとなる.打撃位 置に最も近い No.2 のコンクリートマイクでは, 音源からの伝播時間を平均すると 113.3us であ った.打撃位置とこのコンクリートマイクの直 線距離は 0.5590m であることから,弾性波速度 は 4933m/s である. 読み取りデータが1つずれ た場合, 伝播時間は 133.3µs となり, 弾性波速 度は 4194 m/s である. この弾性波速度の差は 739m/s である.

3.4 同定結果

前節の事前計測から算出された弾性波速度の 平均値 4,352m/s を用いて,音源位置の同定を行 うこととする.データの読み取り値を表2に示 す.収束計算の初期値は音源位置(*x*₀, *y*₀)を(0,0), 音の発生時刻 *t*₀を 0s とし,収束

条件は補正量 (Δx_0 , Δy_0), Δt_0 が 10⁻⁶以下となる こととした.表3に,音源位置の同定結果と正 解に対する誤差を示す.また,音源位置と同定 結果の位置関係を図8に示す.グラフの縦軸, 横軸はコンクリート床上の座標を表している. 音源位置の正解を○で示し,同定された位置を ▲で示している.同定誤差の最大値は,X軸方 向で 120.1mm,Y軸方向で 155.4mm となった. 収束回数は全てのデータで4回となった.誤差 の原因としては,データの読み取り精度,弾性 波速度の同定精度などが挙げられる

3.5 同定精度の検証

位置同定精度の向上に向けた取り組み前節か ら,データの読み取り精度が,音源位置同定に 影響を与えることが分かった.読み取り誤差が 発生する原因として,ノイズと検知点の区別の 判断が難しいことが挙げられる.検知点の読み 取りを容易とするため,ノイズを除去し,サン プリング点間を円滑化する必要がある.

そこで,バンドパスフィルターを用いた解析 検討を行った.バンドパスフィルターにより, 解析する周波数帯域を限定することで波形を滑 らかにすることが期待できる.周波数通過帯域 の設定は,PCケーブルの破断音の周波数特性か ら決定することが望ましい.しかし,現段階で は破断音の周波数特性の断定に至っていない. このことから,本検討ではインパルスハンマー の打撃音を対象として周波数通過帯域を設定す る.打撃音の周波数特性から,低周波数側は 200Hzを下限とし,高周波数側は1,000Hzを

図8 音源位置同定結果

データNo.	マイクNo.	音の検知時刻 [s]	ハンマーの打撃時刻 [s]	マイクの座標	打撃位置との距離 [m]
1	1	3.81046		(-1,-1)	1.521
	2	3.81018	2.91006	(1,-1)	0.559
	3	3.81052	5.81000	(1,1)	1.820
	4	3.81056		(1,-1)	2.305
	1	5.99006		(-1,-1)	1.521
2	2	5.98982	5 08070	(1,-1)	0.559
	3	5.99016	5.98970	(1,1)	1.820
	4	5.99030		(1,-1)	2.305
3	1	2.09330		(-1,-1)	1.521
	2	2.09308	2 00208	(1,-1)	0.559
	3	2.09340	2.07298	(1,1)	1.820
	4	2.09358		(1,-1)	2.305

表2 データ読み取り値

表3 音源位置同定結果

データ No.	X座標	X軸 誤差	Y座標	Y軸 誤差	直線距離
1	0.620	0.120	-0.850	0.100	0.156
2	0.525	0.025	-0.905	0.155	0.157
3	0.485	0.015	-0.857	0.107	0.108

上限とした,図9にインパルスハンマーによる 打撃音の周波数特性の一例を示す.この周波数 特性の再現性は,3回の計測から確認している. このバンドパスフィルターを適用して,前節の 弾性波速度を算出し直したところ.波形の読み 取り精度が向上して,表4のような結果となっ た.以下の解析では,表3の平均値である 2.883m/s を用いることとする. 位置同定精度の 再検討として,図11(a)に示す6個の計測デ ータを用いることとする.これはバンドパスフ ィルターを適用しなかった場合の同定結果であ る.バンドパスフィルターの適用による時刻歴 波形の変化を図 10 に示す 時刻歴波形の静音部 は計測ノイズとなる部分であるが、フィルター の適用前は電圧値で-2.0×10⁻³から 2.0×10⁻³の範 囲であったものが、フィルターの適用後は -5.0×10⁻⁴ から 5.0×10⁻⁴ の範囲に低減された.ま た,時刻歴波形についても,フィルターの適用 により波形が円滑化されていることが分かる。

フィルター適用後の時刻歴波形の検知点は、計 測ノイズの範囲(±5.0×10⁻⁴)を超えたものを変 化点とし,その1つ前の計測データを読み取る ことで決定した.図11に,フィルター適用前後 の位置同定結果を示す.同図から同定位置のば らつきが改善されていることがわかる.位置同 定の詳細を表5に示す.同表から,フィルター 適用前の標準偏差は,X座標値が0.069m,Y座 標値が 0.178m であった.また,フィルター適 用後の標準偏差は,X座標値が0.026m,Y座標 値が 0.061m となり,同定精度が改善されてい る.本検討により,音源位置同定の精度向上に 向けては,時刻歴波形にバンドパスフィルター を適用して、波形の読み取り精度を向上せせる ことが有効であることを確認した.しかし,こ こではバンドパスフィルターの周波数通過帯域 を 200~1.000Hz と仮定したが,本来は, PC 鋼 材破断音の周波数特性から決定することが望ま しい.これについては、今後の課題としたい.

データNo.	マイクNo.	伝播速度[m/s]	平均速度 [m/s]	マイクの座標	打撃位置との距離 [m]
	1	2579		(-1,-1)	1.521
1	2	3082	3002	(1,-1)	0.559
	3	3344		(1,1)	1.820
	1	2794		(-1,-1)	1.521
2	2	4109	3330	(1,-1)	0.559
	3	3087		(1,1)	1.820
	1	2794		(-1,-1)	1.521
3	2	3082	2914	(1,-1)	0.559
	3	2867		(1,1)	1.820
	1	2395		(-1,-1)	1.521
4	2	3082	2794	(1,-1)	0.559
	3	2905		(1,1)	1.820
	1	2794		(-1,-1)	1.521
5	2	3082	3073	(1,-1)	0.559
	3	3344		(1,1)	1.820
6	1	2395		(-1,-1)	1.521
	2	3082	2662	(1,-1)	0.559
	3	2508		(1,1)	1.820

表4 弾性波速度(バンドパスフィルター適用後)

(b)時刻歴波形(拡大図) 図 10 バンドパスフィルターの効果

図 11 同定結果の比較

バンドパフ	データNo.	同定座標			誤差 [m]		母標準偏差[m]		分散	
		Х	у	Х	у	直線距離	Х	у	Х	у
	1	0.671	-0.484	0.171	0.266	0.316	0.069	0.178	0.004711	0.031775
	2	0.693	-0.727	0.193	0.023	0.194				
~	3	0.609	-0.852	0.109	0.102	0.149				
~	4	0.702	-0.585	0.202	0.165	0.261				
	5	0.833	-1.032	0.333	0.282	0.437				
	6	0.741	-0.796	0.241	0.046	0.245				
	1	0.548	-0.847	0.048	0.097	0.109	0.026	0.061	0.000683	0.003696
	2	0.543	-0.746	0.043	0.004	0.043				
	3	0.577	-0.680	0.077	0.070	0.104				
	4	0.511	-0.838	0.011	0.088	0.088				
	5	0.591	-0.840	0.091	0.090	0.128				
	6	0.569	-0.782	0.069	0.032	0.076				

表5 位置同定結果の詳細

4.まとめ

ここでは, PC ケーブルが破断した際の破断 位置を同定するための基礎検討を行った 具体 的には,複数台のコンクリートマイクによって, 三次元的に音源位置を同定する手法の定式化 を行った 提案手法の妥当性を検証するために, 厚さ方向の影響を無視して二次元問題とした 室内実験を実施した.実験結果から,時刻歴波 形の読み取り精度が位置同定の精度に大きく 影響することが分かった.このため,バンドパ スフィルターを適用して,位置同定精度を向上 させる検討を行った.この結果,屋内試験レベ ルではあるが, PC ケーブルの破断音を模擬し た衝撃音の発生位置を 0.13m の範囲で同定す ることができた.今後の課題は,PC 鋼材破断 音の周波数特性を反映したバンドパスフィル ターの周波数通過帯域の設定と提案手法の三 次元問題への適用検討などがあげられる.

参考文献

 1) 稲葉将吾:橋梁の局部的な損傷検出に向け た振動・波動モニタリングに関する研究, pp4-47,2012.3