1. はじめに

仙台湾周辺海域は東北地方では数少ない長大な砂 浜を有する海岸であり、サーフィンなどが盛んに行 われる東北きっての重要レジャー地域と言える.ま た、仙台塩釜港は東北で唯一の特定重要港湾である ことなど商業的にも東北を代表する重要な拠点であ る.しかしながら仙台湾周辺地域は昨年の3.11 東日 本大震災において多大な被害を受けた.今後の早急 な復興が求められる地域であるが、今後の復旧、湾 口の修復や漁業、養殖業の復旧にあたり、海洋汚染 や大量の浮遊ゴミへの考慮も行っていかなければな らない.

このような問題と直面する中で、海洋環境を保全 し、海洋災害を防止しながら今後とも沿岸海洋の生 産性を維持・向上させるために対象海域での諸過程 を明らかにする事が極めて肝要であると考えられる. この対象海域における諸過程を明らかにすること、 すなわち海水の流動機構を把握する事が必要となる.

2. 研究目的

流動機構とは海流、吹送流、潮汐流の諸条件の影響を受け構成される海の流れのことである.特に仙 台湾周辺海域は親潮や黒潮、対馬海流などの多くの 海流の影響を受ける地域であり、工学的見地から見 ても重要な海域である.そのため本研究では海流、 吹送流、潮汐流の季節ごとの変動も考慮して流動機 構を明らかにしていく.また流動機構を明らかにし た上で仙台湾における海水の交換性、海岸域からの 連続拡散計算、浮遊ゴミの漂流過程について数値シ ミュレーションを行い、今後の仙台湾の復興に本研 究を役立てることを目的とした。

3. 計算手法

数値計算は球面座標系で以下のように示される 水の長波流動を記述するナビエ・ストークスの運動 方程式および連続式を陽的に中央差分する手法を利 用して計算を行う.本研究では吹送流や海流などの 鉛直方向への力を考慮するため図3-2の平面2次元多 層モデルを利用する.

また浮遊ゴミの漂流過程を明らかにするための ルンゲクッタ法を用いた粒子追跡法および拡散状況 把握のための拡散方程式についても以下に示す. 連続式:

$$\frac{1}{a\cos\phi}\frac{\partial u}{\partial\lambda} + \frac{1}{a\cos\phi}\frac{\partial}{\partial\phi}(v\cos\phi) + \frac{\partial w}{\partial z} = 0$$

$$\underbrace{\underline{w}\underline{b}\underline{f}\underline{R}\underline{d}\underline{d}}_{x} : x \underline{f}\underline{n}$$

$$\frac{\partial u}{\partial t} + L(u) - \frac{uv\tan\phi}{a} - fv = -\frac{1}{\rho_w}\frac{1}{a\cos\phi}\frac{\partial P}{\partial\lambda}$$

$$+ A_h \left\{ \nabla^2 u + \frac{(1-\tan^2\phi)}{a^2} - \frac{2\sin\phi}{a^2\cos^2\phi}\frac{\partial v}{\partial\lambda} \right\} + A_v \frac{\partial^2 u}{\partial z^2}$$

$$\frac{\partial v}{\partial t} + L(v) - \frac{u^2 \tan \phi}{a} + fu = -\frac{1}{\rho_w} \frac{1}{a} \frac{\partial P}{\partial \phi}$$
$$+ A_h \left\{ \nabla^2 v + \frac{\left(1 - \tan^2 \phi\right) v}{a^2} - \frac{2 \sin \phi}{a^2 \cos^2 \phi} \frac{\partial u}{\partial \lambda} \right\} + A_v \frac{\partial^2 v}{\partial z^2}$$
$$z \, fz \, |z|$$
$$- \rho_w g - \frac{\partial P}{\partial z} = 0$$

ただし,

u:x 方向速度(m/s), v:y 方向速度(m/s), h:水深(m), $<math>\zeta:$ 水位(m), f: コリオリカ, $A_h:$ 水平動粘係数(m²/s)、A $_z:$ 鉛直動粘係数(m²/s) a:地球の半径(= 6.37×10^6 m), C_z : 海底摩擦係数

粒子追跡法:

$$\begin{split} X_{1} &= X_{0} + U_{X_{0}} \frac{\Delta t}{\Delta x} \qquad Y_{1} = Y_{0} + V_{Y_{0}} \frac{\Delta t}{\Delta x} \\ X_{1}' &= X_{0} + U_{X_{0}} \frac{\Delta t}{2\Delta x} \qquad Y_{1}' = Y_{0} + V_{Y_{0}} \frac{\Delta t}{2\Delta x} \\ (X_{1}', Y_{1}') 地点の流速を (U_{X1''}, V_{Y1'}) とすると, \Delta \\ t後の座標 (X_{2}, Y_{2}) は, \end{split}$$

$$X_{2} = X_{0} + U_{X_{1'}} \frac{\Delta t}{\Delta x} \qquad Y_{2} = Y_{0} + V_{Y_{1'}} \frac{\Delta t}{\Delta x}$$
$$X_{2}' = X_{0} + U_{X_{1'}} \frac{\Delta t}{2\Delta x} \qquad Y_{2}' = Y_{0} + V_{Y_{1'}} \frac{\Delta t}{2\Delta x}$$
$$(Y_{1'} - Y_{1'}) \text{the } \phi \text{ single} \left(U_{1} - V_{1} \right) \text{ be the } t \in \mathbb{N}$$

 (X_{2}', Y_{2}') 地点の流速を $(U_{X2'}, V_{Y2'})$ とすると, Δ t後の座標 $(X_{3}, Y_{2 \pm 3})$ は、

$$X_{3} = X_{0} + U_{X_{2}} \frac{\Delta t}{\Delta x} \quad Y_{3} = Y_{0} + V_{Y_{2}} \frac{\Delta t}{\Delta x}$$
$$X_{3}' = X_{0} + U_{X_{2}} \frac{\Delta t}{2\Delta x} \quad Y_{3}' = Y_{0} + V_{Y_{2}} \frac{\Delta t}{2\Delta x}$$
$$(Y = Y) \text{th } f \phi \text{ for } a \neq c (U = V_{0}) \text{ b } \neq z \text{ b } \phi$$

 (X_3, Y_3) 地点の流速を (U_{X3}, V_{Y3}) とすると、 Δt 後の座標 $(X_3, Y_{2¥3})$ は、

$$F = -D \partial c / \partial n$$

$$\left\{ Cu - D_x \frac{\partial C}{\partial x} \right\}_x \Delta y \Delta z - \left\{ Cu - D_x \frac{\partial C}{\partial x} \right\}_{x + \Delta x} \Delta y \Delta z$$

$$= \left\{ -\frac{\partial}{\partial x} (Cu) + \frac{\partial}{\partial x} \left(D_x \frac{\partial C}{\partial x} \right) \right\} \Delta x \cdot \Delta y \Delta z + \bar{n} \mathcal{K} \mathfrak{P}$$
同様にして y 方向では
$$\left\{ -\frac{\partial}{\partial y} (Cv) + \frac{\partial}{\partial y} \left(D_y \frac{\partial C}{\partial y} \right) \right\} \Delta y \cdot \Delta z \Delta x + \bar{n} \mathcal{K} \mathfrak{P}$$
z 方向では
$$\left\{ -\frac{\partial}{\partial z} (Cw) + \frac{\partial}{\partial z} \left(D_z \frac{\partial C}{\partial z} \right) \right\} \Delta z \cdot \Delta x \Delta y + \bar{n} \mathcal{K} \mathfrak{P}$$

$$\frac{\partial C}{\partial z} + u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} + w \frac{\partial C}{\partial z}$$

$$= \frac{\partial}{\partial x} \left(D_x \frac{\partial C}{\partial x} \right) + \frac{\partial}{\partial y} \left(D_y \frac{\partial C}{\partial y} \right) + \frac{\partial}{\partial z} \left(D_z \frac{\partial C}{\partial z} \right)$$

4. 入力条件

本研究にて流動機構に大きな影響を与える諸条 件は表 4-1 のものを使用した.また計算領域は図 4-1 に示す.

5. 計算結果

季節ごとの諸条件、仙台湾周辺海域の流動機構を求 めた上で、仙台湾周辺海域における粒子追跡と拡散 計算を行った.

5.1 潮汐流

潮汐流では上げ潮時に湾内に向かって流れが 発生し、下げ潮時には湾外への流れが発生した. 潮汐流による流速は 0.03m/s 程度であった.

5.2 海流

海流では湾外において強い流れが発生するものの湾内での流速は 0.01~0.03m/s であった.

5.3 吹送流

吹送流では季節ごとの変動が大きく、季節により流れが大きく変わることが分かった.しかし吹送流による流速は0.003m/s程度であり、潮汐流や海流に比べそ、影響力が小さいことがわかった.

5.1 粒子追跡

仙台湾周辺海域で問題になっていた浮遊ゴミを仮定 した粒子追跡の解析を行った.浮遊ゴミの追跡につ いては、ルンゲクッタ法を用いた粒子追跡法を用い た.本研究においては浮遊ゴミに特定の条件を与え ることなく重さ0によって浮遊ゴミの追跡を行った. 解析結果を図 5.1-1 に示す.図は粒子追跡計算開始 24時間後の図である.解析結果より粒子は湾外で移 動距離が大きくなり、湾内になるほど移動距離が小 さくなる傾向がある.これより湾外において海水の 流れが大きく、湾内では小さいことがわかる

図 5.3 吹送流による流速分布図と流速ベクトル図

また本研究では長岡技術科学大学の入江らの「震 災後の仙台湾潮流計測」での GPS 積載ブイによる 観測結果とシミュレーション結果の比較検討を行っ た.入江らの観測結果と本研究におけるシミュレー ション結果の対応部分を図 5.1-3 と図 5.1-4 に示す. 比較結果は図 5.1-3 に比べ、図 5.1-4 は移動距離が 小さくなったが、これには観測日当日に計算領域外 に存在していた台風によりうねりなどの特殊な波が 発生していたと考えられる.観測日当日の天気図は 図 5.1-2 に示す.

座標(0:0)がブイの投入地点となる.

図 4-1 計算領域の水深分布図

表 4-1 解析に用いたデータセット

	データ名	提供
地形	e-topo1	米国国立地球.,物理データセンター
風	メソ客観解析データ	気象業務支援センター
潮汐	海洋潮汐モデルnao99b	国立天文台水沢観測所,松本
海流	海洋速報	海上保安庁

図 5.1-2 GPS 積載ブイの観測日の ASAS

5.2 拡散計算

領域の外側条件では濃度が自由に領域外へ浸透す る自由透過条件として計算を行った.

5.2.1 仙台湾の海水交換性の把握

仙台湾の水が外領域の水とどのように海水交換を おこなっているかを把握するために仙台湾周辺海域 における拡散計算を行った.

図5.2.1から図5.2.3の仙台湾全域おける拡散計算 では濃度は計算開始時のみ与え、その後時間経過と ともに拡散する状況を計算した.季節変動としては 夏場と冬場を比較すると冬場における拡散速度は夏 場よりも速いことがわかった.しかし、拡散開始後 30日目の拡散領域については夏場の方が拡散領 域が大きいことがわかった.これは初期の拡散速 度については季節風の影響が大きく、拡散領域に ついては海流の影響が大きいことを表している.

5.2.2 仙台湾周辺海岸域からの連続拡散計算

仙台湾周辺海域における流れの中で仙台湾周辺海 岸域より拡散物が発生した場合、どのように拡散す るのかを明らかにするために海岸域からの連続拡散 計算を行った.仙台湾周辺海域からの連続拡散計算 においては拡散物が連続的に放出させる線源拡散と して、時間経過とともに拡散する状況を計算した.

仙台湾全域からの拡散計算と異なり、季節による 変動が少ないことが分かる.また拡散速度も遅く、 拡散範囲についても仙台湾全域に比べ小さいことが わかる.これらの結果より仙台湾の湾内においては 停滞性があることがわかる.

図 5.1-3 GPS 積載ブイの観測結果(2時間)

図 5.1-4 シミュレーションの検証結果(2時

5. まとめ

仙台湾周辺海域の潮汐流・吹送流・海流における 流動機構を各シミュレーションにより明らかにした. また、季節ごとの変動値を勘案することにより、流 動機構における季節変動を確かめた.

浮遊ゴミの粒子追跡においては海の流れに影響を 与える各条件の漂流過程を明らかにした上で入江ら の GPS 積載観測ブイの観測結果との比較検討を行 い、うねりなどの海洋に存在する特殊な波も考慮す ることの必要性を明らかにした.

仙台湾の海水交換性については北部から流入して くる海流が湾内入り口に流入し、湾内の海水は最も 開けた南東部分と南部の沿岸域に沿って南下するこ とにより湾外へと流出することを明らかにした.ま た、30日後であっても初期濃度の1/6程度が湾内に 残るなど仙台湾では海水の交換性が低いことが分か った.仙台湾周辺海岸域からの連続拡散計算におい ては仙台湾中心域へと拡散していくものの中心域に おいて拡散速度は減速しのちに湾外へ拡散していく ことを明らかにした.また南相馬海岸域からの連続 拡散計算では、西部への拡散傾向と海岸沿いにて拡 散物が停滞する傾向を明らかにした.

6. 参考文献

- 宇野宏司・倉井春菜・辻本剛・柿木哲哉: 瀬戸内海を漂流する浮遊ごみの年挙動:土木学 会論文集 B2(海岸工学) Vol. 66, No.1: 1326-1330:2010
- 2). 入江博樹・保裕志・嶋田萌由・森功啓:震 災後の仙台湾潮流計測:巻2011:189-192: 2011
- 3). 犬飼直之,早川典生,福島祐介,細山田得 三(1997):数値計算による吹送流を考慮した海 表面浮遊粒子追跡に関する研究,海岸工学論文 集,第44巻,pp1046-1050
- 4) . NAO. 99b 潮汐予測システム, <u>http://www.miz.nao.ac.jp/staffs/nao99/in</u> <u>dex.html</u>
- 5). 第二管区海上保安本部海洋情報部

図 5.2.1-1 拡散計算濃度分布図冬(24 時間)

図 5.2.1-2 拡散計算濃度分布図冬(30日)

図 5.2.2-1 海岸域からの連続拡散計算濃度分布図 冬(24 時間)

