1. はじめに

土地被覆とは、植生、水、土壌などの地表面を 被覆する表面素材の分布状態のことで、都市の社 会的土地利用と深い関連を有している. 広域情報 をリモートセンシング技術により平野部のみで はなく山間部等の現地調査が困難な地区を含む 土地利用の変化、開発領域を抽出することは重要 である. 土地被覆の経年変化の抽出は、従来、森 林であるか裸地であるかという論理的な内容で 判別されており、森林に裸地が少し増えてきて、 森林が徐々に減少した状態などをうまく反映し にくかった、土地被覆状態を地表面の表面素材の 被覆程度で、判別していくことで、中間的な状態 を加味した、土地被覆の変化の把握を、より的確 におこなえる可能性がある.

2. 研究目的

本研究では土地被覆の経年変化抽出手法の改善を目的とし,LANDSAT-7 ETM+により観 測・記録された多時期 ETM+データを使用し,空 間分解能を向上させるパンシャープン画像処理 を行い,植生変化指標により植生に着目した土地 被覆変化領域の抽出を行い,植生変化量により, 植生と裸地の中間的な状態を加味した,土地被覆 変化状態の把握を行い,変化抽出を行った領域に おいて画素内解析を行い,高解像度の画像により 解析精度の検証を行う.

環境リモートセンシング研究室 馬場康輔 指導教員 力丸厚,坂田健太,入江博樹

3. 対象領域および使用データ

本研究では 3 時期の長岡市と関東地方の LANDSAT-7 ETM+データを使用した. そのデ ータ解析範囲を図2に,データ諸元を表1に示す. 本研究では土地被覆変化領域を抽出するのに 障害となる積雪や雲などが極力少なく同じ季節 で年の違うデータを選んだ.

図2 検討対象の解析範囲 長岡(左)関東(右)

表 1 LANDSAT ETM+データの諸元

Band	波長帯(μm)	空間分解能(m)
1	0.45 \sim 0.52	30
2	0.52 \sim 0.605	30
3	0.63 \sim 0.69	30
4	0.75 \sim 0.90	30
5	1.55 \sim 1.75	30
6	2.09 \sim 2.35	30
7	10.40 \sim 12.50	60
8	0.52 \sim 0.90	15

4. 空間分解能改善処理

空間分解能を向上させることにより,画像解析 の精度を向上させ,より詳細な土地被覆変化領域 を抽出するために,空間分解能が低いカラー画像 と,空間分解能が高いパンクロマチック画像を使 用し,空間分解能の高いカラー画像を作成する処 理であるパンシャープン画像処理を行う.処理方 法は RGB-HSV 変換といい, RGB 値を HSV 値に変換 し,その後 HSV 値の V 値を分解能が高いパンクロ マチック画像に置き換えて,HSV 値から RGB 値に 変換することで高分解能の RGB 画像が得られる処 理方法である.しかし,通常パンシャープン画像 処理では RGB の Band を使用するが,本研究では,

LANDSAT の分解能の高いパンクロマチックの 画像の波長帯と対応しているのは RGB (Band1,2,3)ではなく, IR, R, G(Band2,3,4,)の 3Band のためこの3Band を使用してパンシャー プン画像処理を行った. この空間分解能改善処理 により, LANDSAT 画像の空間分解能を 30m から 15m に向上させた図を図 3 に記す.³⁾

パンクロ画像処理前原画像処理後図3パンシャープン処理結果

5. 植生変化指標解析

従来植生の量を見るために行われてきたもの のひとつとして NDVI があるが,NDVI は,年度 における傾向を見ることは可能であるが,閾値の 適切な設定が必要となる.それが不適切な場合, 分類結果に誤差が多く含まれることとなる.¹⁾ また,年度間の比較は困難である.そこで,以下 の式を用いて,植生の経年変化の抽出を行った. これは植生域では IR が高く,R が低いという傾 向を利用して,時期 1,2の2つの時期で解析を 行ったとき,時期 1の植生量が多ければ多いほど 値が高く,時期 2の植生量が多ければ値が低くな る式である.ただし,この式は植生域に対しての みの指標である.この指標式を用い植生変化指標 画像を作成した.本研究ではこの式を植生変化指 標と呼ぶ.²⁾計算式を式(1)に記す.

植生変化指標=
$$\frac{IR_1 \times R_2 - IR_2 \times R_1}{IR_1 \times R_2 + IR_2 \times R_1} \qquad \cdots (1)$$

IR₁:時期1における近赤外線(band4) R₁:時期1における赤(band3) IR₂:時期2における近赤外線(band4) R₂:時期2における赤(band3) 解析結果より局所抽出した土地被覆変化領域を 図 3.4.5 に示す.

図3 関東地方の植生変化指標解析結果①

図4 関東地方の植生変化指標解析結果②

図5 関東地方の植生変化指標解析結果③

関東地方の植生変化指標解析結果①の抽出箇 所は 2000 年には日本自動車研究所のテストサー キットがあったが,開発が進み,今現在はつくば 研究学園駅へ土地被覆変化をいっていたことが 確認できた.②の抽出箇所は千葉県印西市で,植 生だった箇所が,経年変化により土壌に変化した ことが分かる.③の抽出箇所は茨城県つくば市下 萱丸で,植生だった箇所が,大規模な開発が進み. 経年変化により土壌に変化したことが分かる.

6. 画素内解析

画素内解析は、衛星画像の1つのピクセルにつ いて、ピクセル中に存在するカテゴリーの純粋な スペクトル情報が複数混合されたものと考え、1 ピクセル内の各カテゴリーの占有率を逆算すると いうものである.構成するカテゴリ(エンドメン バー)を農地や森林域において構成比率の高い植 生、土壌、水に設定した.植生変化指標結果の図 3.4.5の解析結果と同領域の3時期において画素内 解析を行った.画素内解析を行うのに必要な各々 の年代、バンド、カテゴリー別の平均値、及び標 準偏差を各々のカテゴリーの経年変化していない ピュアピクセルから49ピクセル標本抽出を行い、 標準ユークリッド距離を算出した.標本抽出を行 った領域の図を図6に示す。標準ユークリッド距離 計算式を(2)に記す.

図6 エンドメンバー標本取得箇所

$$d = \sqrt{\left(\frac{x_1 - y_1}{\sigma_1}\right)^2 + \left(\frac{x_2 - y_2}{\sigma_2}\right)^2 + \left(\frac{x_3 - y_3}{\sigma_3}\right)^2} \quad \dots \quad (2)$$

d:標準ユークリッド距離

x:解析画素の画素値 **y**:エンドメンバーの値 σ:エンドメンバーの標準偏差

1, 2, 3, はそれぞれ緑, 赤, 近赤外, の band2, 3, 4 標準ユークリッド距離を用い, 植生変化指標図で 抽出を行った, 植生指標解析結果①, ②, ③と同 じ領域で画素内解析を行った. また, 解析領域に は水の領域はないと判断し, 土壌と植生について 画素内解析を行った. 式を(3), 結果を表 2.3.4 に記す.

土壌の面積=*d2/(d1+d2)* 植生の面積=*d1/(d1+d2)* (3) *d1*:土壌の標準ユークリッド距離 *d2*:植生の標準ユークリッド距離

表2 解析領域①の画素内解析結果

	植生面積	土壌面積
2000 年	84%	16%
2004 年	44%	56%
2011 年	12%	88%

表3 解析領域2の画素内解析結果

	植生面積	土壌面積
2000 年	92%	8%
2004 年	34%	66%
2011 年	5%	95%

表4 解析領域③の画素内解析結果

	植生面積	土壌面積
2000 年	88%	12%
2004 年	37%	63%
2011 年	20%	80%

7. 解析精度の検証

高空間分解能衛星画像を用い,画素内解析を行った領域①,②,③と同じ緯度,経度の部分を抽出し,画素内解析により算出した土壌と植生の占 有率の結果との比較を行う.また,高空間分解能 衛星画像は近年の画像しか取得できないため検 証作業は2011年の結果について行った.比較検 証図を図 6,7,8に示す.

図6 解析領域①画素内解析精度比較検証図

2011年の解析領域①の画素内解析結果は植生 面積が12%,土壌面積が88%であったが,高解 像度衛星画像で解析領域内は植生と土壌ではな く,開発が進みコンクリートであることが分かる. この結果より,エンドメンバーを植生と土壌以外 にも設定する必要があることが示唆された.

図7 解析領域②画素内解析精度比較検証図

高解像度衛星画像では 100%土壌が確認できた が画素内解析の結果では 95%となり,正確な解析 精度を得ることができなかった.

撮影日:2011年3月29日

図8 解析領域③画素内解析精度比較検証図

高空間分解能衛星画像では植生部分は確認 されず,土壌とコンクリートが確認できるが,画 素内解析結果では植生が20%と大きく誤差があ る結果になった.この誤差の要因としてエンドメ ンバーを設定したカテゴリー数,最初に設定した エンドメンバーの値によるものが多くを占めて いると考察する.

8. まとめ

パンシャープン画像処理を行ったことで空間 分解能の向上により,経年変化抽出精度が向上した.

植生変化指標を用いることで植生の経年変化 を量的な変化で表すことができ、中間的な状態の 土地被覆把握ができた.これにより、従来行われ てきた質的に土地被覆の経年変化を把握するの ではなく、ではなく量的に土地被覆の経年変化把 握の可能性が示唆された.

植生変化指標図より抽出した領域で画像内解 析を行うことで、植生と土壌の1ピクセルあたり の占有面積を算出することができたが、高空間分 解能衛星画像と解析精度の比較検証を行ったが、 完全に値は一致せず誤差が見られた.」

参考文献

 近藤昭彦、グローバルリモートセンシングに よる植生・土地被覆変動の抽出とその要因解析、 水文・水資源学会誌,2004,461p

2) 永田 圭, 時系列 MODIS 観測データを用い たオーストラリア南部の作物生育状態の経年比 較,長岡技術科学大学大学院修士論文,2009,30p

 JAXA 宇宙航空研究開発機構: http://www.sapc.jaxa.jp/use/challenge/process/o rtho.html (accessed Sep.2011)