1.はじめに

現在,鉄筋コンクリート構造物の耐震補強方法 として多くの補強方法が提案されている. 実用化さ れている補強方法には一長一短があり、 適用する構 造物の事情に応じて使い分けられている. アラミド ロープを既設橋脚に巻き付ける工法では, アラミド ロープを樹脂で固めずに外周に巻き立てた場合,部 材のせん断耐力を向上させることはできないが、変 形性能を大幅に向上させることが既往の研究により 確認されている.施工性に優れる工法であるととも に経済的な工法として期待が高い.しかし、じん性 補強に対する効果を有する事はわかっているが、そ のメカニズムについては、未解明な点が多い. 連続 繊維ロープを用いた補強工法を実用化するためには, 設計法,施工法を確立しなければならない.そこで、 本研究はアラミドロープを用いた既設 RC 橋脚の耐 震補強に関する実験 1)から、連続繊維ロープによる 補強メカニズムについて明らかにし、これに基づき 補強後の性能を予測する力学モデルの開発を行った.

2. 水平力を受けるロープ補強柱の軸方向鉄筋降伏後 の耐荷性状のモデル化

2.1 水平力を受ける柱部材の変形状態のモデル化

連続繊維ロープにより巻立て補強された鉄筋コン クリート柱部材の水平方向の荷重に対する耐荷性状 に関し、次のような力学モデルを考案した. 図-1 に提案したモデルの計算フローを示す. せん断ひび コンクリート研究室 藤川 博樹

割れが横断している区間は、ひび割れの先端を回転 中心とした剛体回転により変形をモデル化する.残 りの区間は弾性はりとみなし、曲げ変形を考慮する. これに、軸方向筋のフーチングからの引き抜けも加 算する. せん断ひび割れの発生角度は $\theta = m \cdot \rho$ で表 す.ここに, mは任意の定数, ρはせん断ひび割れ の先端を中心とした回転である.ひび割れの先端位 置は圧縮側軸方向鉄筋の位置から 0.1d の距離とする.

2.2 支配方程式

(1) カとモーメントのつりあい

次にフリーボディにはたらく力を列挙し、それら のつりあいおよびモーメントのつりあいを考える.

水平方向: $V_c + \Sigma V_{fi} + \Sigma V_{si} - P = 0$

鉛直方向: $T_s + C_c' + C_s' = 0$

せん断ひび割れ先端まわりのモーメント: $T_{s} (d - 0.1d) + \sum (V_{fi}Z_{fi}) + \sum (V_{si}Z_{si}) + C_{c}^{2}Z_{c} - C_{s}^{2}0.1d - Py_{p}$ =0

図-2 せん断ひび割れより上のフリーボディ

ここに、P は作用荷重である. V はせん断ひび割 れ発生後にコンクリートの負担するせん断力であり, 回転中心を含む水平断面内に作用するとする. V_f は せん断ひび割れを跨ぐi巻き目のCFロープの引張力, V_iはせん断ひび割れを跨ぐ i 巻き目のせん断補強鉄 筋の引張力である. せん断ひび割れを跨ぐロープと せん断補強鉄筋の本数は、間隔、部材寸法、ひび割

れ角度により定まる. T_s は引張側軸方向鉄筋の引張 カ, C_s は圧縮側鉄筋の圧縮力である. C_c は圧縮側コ ンクリートの軸方向圧縮合力であり, 圧縮側コンク リートの応力 σ 。を面積 A_c で積分した値で表す.

(2)各材料の変形の関係

フリーボディのせん断ひび割れの先端を中心とし た剛体回転角 ρ をとする. 圧縮縁のコンクリートの ひずみは,既往の研究と同様に回転角 ρ の関数とし, Walther のモデルにより, $\epsilon_c' = (y_e/d)^{1/2} \cdot \rho$ と表し, 回転角の関数として求めた²⁾. コンクリートのひず みは平面保持の仮定により回転中心から圧縮縁まで コンクリートのひずみが直線的に分布するとする.

せん断ひび割れ先端から上方向に数えてを*i* 巻き 目の連続繊維ロープの位置におけるせん断ひび割れ 幅の水平成分は $w_{xi} = p \cdot Z_{fi}$ とし、ロープとコンクリ ートは部材の隅角ですべるものとし、他はアンボン ドとする.この条件と図-2よりロープのひずみは $\varepsilon_{fi} = w_{xi}/2\ell$ で表される.

(3) 各材料の負担するカ

 C_c , V_{si} , V_{fi} は, せん断ひび割れの先端を中心と した回転 (回転角 ρ) の関数として, これより求まる *i* 巻き目の CF ロープのひずみから V_{fi} を求める (図 -2). V_{si} も同様にして計算する. 圧縮ひずみより, 各位置におけるコンクリートの応力 σ_c , およびその 積分値 C_c を求める. コンクリートの応力-ひずみ関 係は圧縮軟化が計算できる前川モデルを用いる. 軸 方向鉄筋は降伏しているので, T_s は鉄筋の降伏強度 とする. V_c , P, C_s は変形の関数とせずに未知量と しておく. 以上より, 全体として閉じた方程式系と なり, 回転角 ρ を与えると荷重 P および部材の水平 変位 δ を計算することができる.

3. 塑性ヒンジ領域における軸方向鉄筋座屈の影響

図-4 圧縮域のかぶりコンクリートのずれ 実験結果から(図-6,7),かぶりコンクリートのは らみ出しが耐力の低下を生じる原因と考えられる. そこで,塑性ヒンジ領域における軸方向鉄筋の座屈 によるはらみ出しを考慮し(図-3),ロープ補強に よって同じ変形量でもかぶりコンクリートのずれΔ a が抑えられるようにモデル化した(図-4).さら に,ずれΔaが生じると圧縮応力σ_c,が低下し始める と仮定し,低減係数γを設定してモデル化した(図 -5).その結果圧縮合力C_c,が低下し,耐力が急低下 するように定式化した.

図-5 コンクリートの圧縮応力とひずみの関係

4. じん性算定モデルの検証

図-6,7の実験結果から、ロープ補強した場合に着 目すると、かぶりコンクリートのはらみ出し量の増 加が、荷重の低下につながるものと考えられる.図 -6にアラミドロープ巻立てによるRC橋脚を模擬し た実験により得られた荷重-変位関係と、本研究で 提案した力学モデルにより算出された荷重-変位関 係を示す.実験結果と同様に、ロープ補強により変 形性能が大きく向上する傾向が再現された.また、 ロープ間隔が小さくなるにつれて終局変位が増大す ることが再現された.図-7にかぶりコンクリートの はらみ出し量-変位関係を示す.算定モデルは、実 験結果と概ね同程度の変形量から、はらみ出しが増

加する現象を再現できている.また,無補強の場合 よりもロープ補強した場合の方が,かぶりコンクリ ートのはらみ出し量が増大する傾向が示された.

じん性率は、実験値と算定モデルで算出される計 算値を比較すると、概ね同じような傾向を示すこと が確認された(図-8).しかし、せん断補強鉄筋の 間隔が変化した場合でも、算定モデルでは同程度の じん性率が算出される.この結果は、かぶりコンク リートのはらみ出しモデルに、せん断補強鉄筋の影 響を考慮していないことが原因であると考えられる. 今後は、かぶりコンクリートのはらみ出しモデルに、 せん断補強鉄筋の間隔、補強量などの影響を考慮し た力学モデルが必要であると考えられる.

5. まとめ

本研究では以下の知見が得られた.

(1)ロープ巻立て補強によるじん性補強メカニズム は、かぶりコンクリートの剥落が抑えられ、耐力の 急激な低下を圧縮力の保持によって防いでいると考 えられる.

(2)提案したじん性算定モデルは、補強メカニズムに 基づき、かぶりコンクリートのはらみ出しを評価し、 変形性能を向上させることによって、じん性向上を 評価することが可能である.

(3)提案したじん性算定モデルは、せん断補強鉄筋の 効果を正しく評価できていない。今後はかぶりコン クリートはらみ出しモデルに、せん断補強鉄筋の影 響を考慮する必要があると考えられる.

6. 参考文献

 1) 塩畑秀俊,三田村浩,渡邊忠朋,下村匠,丸山久
-:アラミドロープを用いた既設鉄筋コンクリート 橋脚の耐震補強に関する実験的研究,構造工学論文 集 Vol.56A(2010年3月)

 2)上原子晶久,下村 匠,丸山久一:新保学幸:連 続繊維シート補強 RC 柱のじん性予測に関する力学 モデル,土木学会論文集,No.739/V-60, pp.237-249, 2003.8