トラス橋の構造冗長性の評価法に関する研究

建設構造研究室 笹川 卓指導教員 岩崎 英治

1. 研究背景および目的

2007年、米国ミネソタ州のトラス橋に おいて部材の破断により橋梁全体が崩壊 した. 日本でも木曽川大橋, 本荘大橋に おいて斜材が腐食により破断するという 大きな損傷が発生した. しかし, 木曽川 大橋, 本荘大橋は米国ミネソタ州のトラ ス橋のように橋梁全体が崩壊していない. この違いを明らかにするために構造冗長 性(リダンダンシー)評価が行われている. リダンダンシーとは、橋梁のある部材が 破断したとしても, その他の部材が断面 力を負担することで橋梁全体の崩壊に至 らないことであり、構造に余裕があると いうことである. この精度が向上すれば 社会基盤構造物の劣化に伴う補修・補強 対策を行う上で有益となると考えられる ことから, 本研究では長生橋を参照橋梁 とした 5 径間のゲルバートラス橋を対象 としてリダンダンシー評価法の検討を行 うことを目的とする.

写真-1 長生橋全景

2. リダンダンシー解析

(1) 構造のモデル化

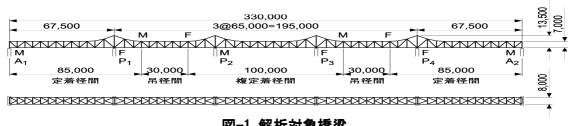
本研究では FEM 解析により縦桁を考慮したモデルと省略したモデルの 2 種類の 3 次元モデルを作成する. 床版は省略. 主構, 橋門構, 横桁, 縦桁はすべて梁要素でモデル化する. 主構, 横桁, 縦桁の接続部には剛体要素を用い, 偏心を考慮し

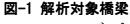
ている.

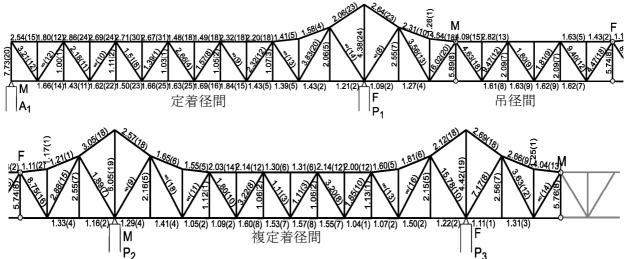
(2) 荷重

死荷重については、長生橋復元図面を 元に算出した. 活荷重については、H14 道路橋示方書の B 活荷重を使用し、各部 材にとって最も不利な載荷になるように 与え、各部材に生じる断面力の最大値を 計算する.

(3) 線形解析による部材照査方法

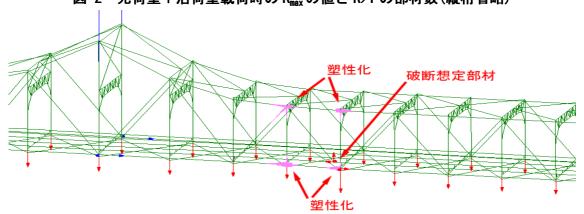

破断想定部材を除去し、断面力を開放する際には既往の研究に倣い、動的効果を考慮し、1.854倍の衝撃を断面力に乗じる.部材除去後の残りの部材の断面力と、その部材の強度の比からR値を算出し、R値が1以下であれば、その構造はリダンダンシーがあると評価される.


(4) 非線形解析による部材照査の方法


破断想定部材を除去し、この部材に生じていた断面力を開放する.このとき、断面力の開放率を制御変数として非線形解析を行い、構造全体が終局状態になるときの開放率を算出する.構造全体が終局状態になるときの開放率が1以上、あるいは動的効果を考慮した係数以上であれば、その構造はリダンダンシーがあると評価される.

3. 結論

線形解析については**図-2** の結果から、 縦桁を考慮する場合と省略する場合では、 下弦材が破断する場合および支点部付近、 ゲルバー部以外の垂直材が破断すると R>1 の部材が多いことから、縦桁が配置さ れていないと、破断力を負担する部材が 少ないので、モデル化の精度がリダンダ ンシーの評価を左右する.



(注)括弧内の数字は R 値が 1.0 を超えた部材数,数値は Rmax の値を示す.

図-2 死荷重+活荷重載荷時の Rmx の値と R>1 の部材数(縦桁省略)

終局時の部材塑性化位置(開放率:1.159)

図-3 死荷重作用時に斜材が破断した場合の解析結果

非線形解析については**図-3** の結果から, 部材破断は断面力の開放率=1 に相当するが, 開放率が 1 以下で初期降伏し, 開放率が 1 を若干超える所で終局を迎える部材がある. 線形解析では R<1 の部材が, 非線形解析では開放率 1 を若干超える所で終局を迎える部材があることから, 線

形解析によるリダンダンシーの評価は危 険側の評価になっていることが分かる.

[参考文献]

永谷秀樹,明石直光ほか:鋼トラス橋の リダンダンシー評価手法(その1,2,3) 土木学会第63回年次学術講演会,1-047, 048,049,2008.9.