長岡技術科学大学大学院 修士2年 瀧本英朗

1. はじめに

斜面対策工の設計には極限平衡法に準拠した設計方法が用い られるが、簡便で現実的な解を与える一方、斜面崩壊の詳細な メカニズムや対策工と地盤の間の相互作用を十分に考慮できな い問題点がある。そこで既往の研究において、斜面崩壊の詳細 なメカニズムや、対策工と地盤の相互作用を適切に考慮可能と なる剛塑性有限要素解析手法を構築した。本研究では、その妥 当性を『中間土で構成した斜面模型による上載圧載荷実験』よ って検証した.

2. 中間土で構成した斜面模型による上載圧載荷実験

2.1実験概要,実験ケース

本解析手法の妥当性を検証するため、模型実験を行った. 図1 に実験装置概要を示し、実験ケースを表1に示す.

高さ300 mm, 奥行き385 mm, 上底225 mm, 下底400 mmのモ デルを締固め度70%で作成した.実験材料には豊浦硅砂6号:藤 森粘土 = 3:1を用いた.また,使用した対策工は、手に入り易 く加工が容易であり、比較的剛性を有する中空アルミパイプを 使用した.対策工の周面にはスプレー糊により、6号硅砂を塗布 した.用いた対策工の径は5 mmと3 mmの2種類とし、対策工の 位置は既往の研究から、補強効果が最も発揮されると考えられ る底面から200 mmの位置に設置した.そしてモデル側面には、 画像解析を行うため、50 mm間隔でメッシュを作製した.

実験方法として、模型地盤に対し、天端部の斜面側の法面前 半分に、載荷装置で鉛直方向に載荷した.荷重はロードセルに より測定し、載荷板左右2点で接触式変位計により変位量を測 定した.また今回実験方法を、地盤調査法²⁰の平板載荷試験を 参考にした.すなわち、載荷速度については、スピードを変え ての実験結果に変化はないと考えられるため、載荷速度を 0.1 mm/sec とし、ロードセルと載荷板の継ぎ目には球座軸を設け、 地盤の変形に軸が追従できる様にしている.また実験中は、地 盤の変形の様子を画像解析するため、観測窓からビデオカメラ により撮影を行った.

表1 実験ケース

Case

Cuse	11日		
1	無補強(対策工なし)		
2	補強斜面 (<i>φ</i> = 5 mm, <i>l</i> = 235 mm, 2本)		
3	補強斜面 (ϕ = 5 mm, l = 235 mm, 4本)		
4	補強斜面 ($\phi = 5 \text{ mm}$, $l = 150 \text{ mm}$, $4 \neq$)		
5	補強斜面 (<i>φ</i> = 3 mm, <i>l</i> = 235 mm, 2本)		

2.2極限支持力の推定

実験の結果、無補強斜面を除いて、明確な極限支持力が得ら れず、荷重が上昇し続ける結果となった.そこで地盤調査法に おける「地盤の平板載荷試験」を参考とし、極限支持力の推定 を行った. 図2に示す様に領域aの付近にてグラフの勾配が大幅 に変化している.b領域における全ケースの破壊モードは天端部 先端で小規模破壊が発生している.この小規模破壊が発生した 原因は載荷装置が前後に移動しないことから起こるパンチ破壊 の様なものだと考えられ、モデル全体における破壊とは考えに くい.そこで明確な斜面全体の極限支持力を推定するため、地 盤調査法³における「沈下量50 mm以内でlog p-s曲線で沈下軸と ほぼ平行となる荷重を極限支持力とする」を参考とした.その 結果、無補強斜面を除く全ケースにおいて左右両端の平均変位 が25 mmの時点で、ほぼ平行となる結果となっており、その時

2.3実験結果

表2に実験結果を示す.計5ケースの実験を行った.実験の結 果, Casel, 2, 3で対策工の本数増加による補強効果が確認され た.次にCasel, 3, 4で対策工の長さの変化による補強効果を確 認すると, Case4に比べCase3において強度が増加していること から,対策工の長さによる強度が確認されたが, Case4では補強 効果が確認されないといった結果となった.これはCase4におい て対策工の長さが、すべり破壊を起こしたとされる位置よりも 短かったため、補強効果が出なかったと考えられる.また, Casel, 2, 5において、対策工の径の変化による補強効果の検討を行っ た. Case2では補強効果が確認されるのに対し, Case5ではCasel と比較しても、殆ど補強効果が出ない結果となった.これは対 策工の径が小さかったために、対策工周辺地盤との付着力がと れず、補強効果が確認されなかったためだと考えられる.詳細 は3.3にて述べる.

表2 実験結果

Case	内容	鉛直変位 (mm)	極限支持力(kN)			
1	無補強(対策工なし)	19.95	0.81			
2	補強斜面 (φ = 5 mm, l = 235 mm, 2本)	25.01	0.86			
3	補強斜面 (<i>φ</i> = 5 mm, <i>l</i> = 235 mm, 4本)	24.99	0.94			
4	補強斜面 ($\phi = 5$ mm, $l = 150$ mm, 4本)	25.04	0.77			
5	補強斜面 (φ = 3 mm, l = 235 mm, 2本)	24.97	0.78			

3. 剛塑性有限要素解析 (RPFEM)

3.1解析メッシュ

解析メッシュを図3に示す.形状寸法は2.1で行った実験モデルと同形状のものを作成した.また、地盤と載荷板の継ぎ目において、ひずみ集中を避けるための特異点を設け、解析ケースは表1に示すように、実験と同様な条件で全5ケース行っている.

3.2解析条件

解析条件を表3に示す. 模型地盤の粘着力は無補強斜面に対す る極限支持力に一致するように逆算して求めた. 載荷板は模型 地盤に対し十分に剛であるため、せん断抵抗角 $\phi = 0.1^{\circ}$,粘着力 c = 5000 kPaと仮定した. 荷重は、前章の実験で得られた無補強 斜面の極限支持力を載荷板面積で除した値、12.16 kNm²を用い た. また、対策工は径3 mm、5 mmにおいて軸降伏応力N、降伏 曲げモーメントMyを求めた.

表3 解析条件					
	せん断抵抗角 φ	34.0°			
模型地盤	粘着力 c	0.8 kPa			
	単位体積重量 yt	15.0 kN/m^3			
またち	せん断抵抗角 φ	0.1°			
軋们 11X	粘着力 c	5000 kPa			
荷重	無補強斜面の極限荷重	12.16 kN/m^2			
	長さ	150 mm or 235 mm			
	弹性係数	6.67E+07 N/mm ²			
対策工(径5mm)	降伏応力(0.2%耐力)σ _y	4.00E+04 kNm			
	軸降伏応力 N	0.51kN			
	降伏曲げモーメント My	4.27E+04 kNm			
	長さ	235mm			
	弹性係数	6.67E+07 N/mm ²			
対策工(径3mm)	降伏応力(0.2%耐力) oy	4.00E+04 kNm			
	軸降伏応力 N	0.16 kN			
	降伏曲げモーメント My	8.52E-05 kNm			

3.3解析結果と解析手法の妥当性の検証

剛塑性解析結果と模型実験結果を、①破壊形態、②極限支持 力の視点から比較し、解析手法の妥当性の検証を行う. ①破壊形態においての比較

各ケースにおける解析結果を実験結果と合わせて図4に示す. 左図がせん断ひずみ分布(実験結果),右図が塑性ひずみ速度 分布(解析結果)である.また,解析結果は極限支持力時の塑 性ひずみ速度分布図を示し,実験結果のひずみ分布は,変位レ ベル25 mmの極限支持力時のひずみ分布を示している.その結 果,実験結果,解析結果共に全ケースにおいて天端部先端と法 尻部にひずみが集中する結果となった.また,実験結果につい ては各ケースの破壊域に差があったものの,解析結果にはその ような傾向はみられなかった.しかし,Casel,2,3において, 対策工の本数が増加するにつれ,斜面中腹部の塑性ひずみが減 少しているのが確認される.よって解析結果において,対策工 の本数増加における補強効果は確認されるものの、実験のよう な破壊形態の変化(滑り面の変化)は確認されない結果となっ た.また、Case4、5においては、無補強状態のCaselに比べ、塑 性ひずみ分布が減少する結果となり補強効果が確認された.こ

図4 左図: せん断ひずみ分布 右図: 塑性ひずみ速度分布)

②極限支持力においての比較

次に極限支持力の視点での比較を行う. 表4に解析結果,実 験結果の極限支持力を示す.先ず,解析結果,実験結果共にCase2, 3 で対策工の本数増加に伴う補強効果が確認される.しかし, Case4,5においては解析結果ではCase1(無補強)と比べ,若 干ながら対策工の本数増加に伴う補強効果が確認されるが,実 験結果では強度が減少する結果となった.これは主に実験方法 に原因があると考えられ,対策工の形状や設置方法により補強 効果が得られなかったと考えられる.特に対策工の周面摩擦効 果による補強効果への影響は大きいと考えられ,今後,主に実 験方法を改善することで,対策を講じる必要がある.

売4	極限支持力につい	ての実験結果と解析結果の比較	;
11.7		$\sim \sim $	

Case	内容	実験結果(kN)	解析結果(kN)
1	無補強(対策工なし)	0.81	0.81
2	補強斜面 (<i>φ</i> = 5 mm, <i>l</i> = 235 mm, 2本)	0.86	0.93
3	補強斜面 (φ=5 mm, l=235 mm, 4本)	0.94	1.00
4	補強斜面 (φ=5 mm, l=150 mm, 4本)	0.77	0.93
5	補強斜面 (φ=3 mm, l=235 mm, 2本)	0.78	0.83
	-		

4. まとめ

補強土工法を対象に剛塑性有限要素法による解析と模型実験を 行い、本解析手法の妥当性を検証した.以下に得た知見を示す. ①実験結果、解析結果共に天端部先端、法尻部にひずみが集中. ②実験結果、解析結果共に対策工の本数増加に伴う補強効果有り. ③今後の課題として、実験結果の数ケース(Case4, Case5)におい て、主に実験計画を見直す必要がある.

参考文献 :1) 田中ら:第43回地盤工学研究発表会, pp.1527-1528, 2008. 2) 地盤工学会:地盤調査法, 1995.