水文気象研究室 松浦 祐樹 指導教員 熊倉 俊郎

1.研究背景

わが国は国土の半分が豪雪地帯に指定されてい る多積雪国である。降雪による被害は雪崩、路面 凍結、視界不良など多岐に渡り、その防止につい ては直接的に雪害の予防や防護を行うハード対策、 間接的に被害を防ぐソフト対策それぞれ様々な方 法が考案されている。ソフト対策の1つとして、 防災気象情報の予測を行うためのメソ数値予報モ デルの開発が 1996 年気象庁で開始され、現在に 到るまでに様々な改善が成され、天気予報などで 現業利用されている。数値予報モデル(以下 NHM) は気象庁が開発した気象予測モデルであり、初期 値、境界値、予報時間などを設定して実行するこ とで降雨、降雪、風速分布など様々な要素を予測 するモデルである。図 1.1 に NHM による関東地 域の計算結果の図例を示す。数値予報モデルは水 平格子間隔の選択によって計算速度や結果表示の 精度が決まるが、その最適なサイズについては明 確な定義されることなく決定されることが多い。 用いた水平格子間隔が地形に対してどの程度の解 像力を持っているか検証することは精度や計算効 率の上昇にもつながる。

2.研究目的

地形の特徴を示す空間スケールは波数空間を用 いることで定量的に捉えることが可能である。水 平格子間隔は対象とする領域の大きさやモデルの 実行に用いる地形データに左右され、解像力が変 化する。水平格子間隔はモデルの実行において大 きな影響を及ぼす要素であるから、対象領域にお いてどの程度の格子間隔が必要であるかについて よく検討する必要がある。本研究では北陸地域に 焦点を当て、数値地図 50m メッシュから得られ た標高データを2次元フーリエ変換することで地 形を代表するエネルギーを導き、その水平解像度 特性を評価する。対象とした地域は関東地域、北 陸地域、長岡地域、山古志地域の4つである。関 東地域については気象庁予報部が行った関東地域 のスペクトル解析に対する検証用として用いた。 北陸地域については関東地域との比較用として用 いた。また、長岡市の雪氷防災研究センターでは 主に新潟県を対象にNHMを実行している。そこ で本研究でも同領域を対象として解析を行い、雪 氷防災研究センターが用いている格子間隔がどの 程度の解像力を持っているのかを評価した。さら に本研究で行うモデル計算のため長岡領域の内さ らに狭い領域として山古志地域を設定し、解析を 行った。標高データには国土地理院発行の数値地 図 50m メッシュ標高データを用いた。

図 1.1 NHM による風速水平分布の計算結果。

3.手法

3.1 地形のスペクトル解析

地形のスペクトル解析には2次元フーリエ変換 を用いた。地形のような画像データをスペクトル 解析するためには2次元フーリエ変換を用いて解 析するのが一般的である。2次元フーリエ変換の 式は以下のようになる。

 $F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-i2\pi(ux+vy)} dx dy$ ここに、 f(x,y) は元の関数、 F(u,v) はフーリエ 変換後の関数、 $u,v \in x, y$ 方向の波数である。プ ログラム上では無限大を取り扱うことができず、 連続の値もとることができないため、実際の計算 にはフーリエ変換に離散を取り入れた離散フーリ エ変換を行う必要がある。離散フーリエ変換は以 下の式で表わされる。

$$F(u,v) = \sum_{y=0}^{N-1} e^{-i\frac{2\pi}{N}vy} \sum_{x=0}^{N-1} f(x,y) e^{-i\frac{2\pi}{N}vx}$$

ここに、Nはデータ数、kは波数、x(n)は実数、X(k)は複素数である。

3.2 地形エネルギー比 R

3.1 より、地形データに対しフーリエ変換を行う ことで、本研究で対象とした地域のパワースペク トルを解析することができた。この結果から、波 数 $k_1 \sim k_2$ に含まれる地形の総エネルギー $E(k_1,k_2)$ を求める。地形の総エネルギーは東西、 南北方向に対象領域のパワースペクトル $S(k_x,k_y)$ について積分を行うことで求めた。計算式は以下 のようになる。

$$E(k_1, k_2) = \int_{k_1}^{k_2} \int_{k_1}^{k_2} S(k_x, k_y) dk_x k_y$$

数値予報モデルが解像することのできる最少波 長は格子間隔の2倍であるが、表現できる最小波 長を4倍とし、水平格子間隔ごとに数値予報モデ ルが表現できる地形の総エネルギーおよび数値地 図が表現できる地形の総エネルギーを求めた。 Lx, Lyを対象領域の幅、 $\Delta x, \Delta y$ をモデルの水平 格子感覚 $\delta x, \delta y$ を数値地図の格子間隔とすると、 数値地図格子間隔が表現することのできる対象領 域の総エネルギーと各モデル格子間隔が表現する ことのできる総エネルギーの比である*R* は、

 $R = \frac{\int_{1}^{L_{x}/(4\Delta x)} \int_{1}^{L_{y}/(4\Delta y)} S(k_{x}, k_{y}) dk_{x} dk_{y}}{\int_{1}^{L_{x}/(2\delta x)} \int_{1}^{L_{y}/(2\delta y)} S(k_{x}, k_{y}) dk_{x} dk_{y}}$

と表わすことができる。本研究では上記の*R*を モデルが表わすことのできる表現力と定義し、モ デルの水平格子間隔が変化することによる地形の 表現力の推移について検証した。

3.3 NHM による風速計算

本研究ではモデル実行時における地形の影響を 検証するために、実際に山古志地域においてモデ ルによる風速計算を行った。計算に用いた地形デ ータは 1km,3km,5km グリッドのデータである。 1km グリッドのデータを元に 3km,5km グリッド のデータを作成し、バイリニア法を用いて内挿し て地形データとした。モデル実行時においては側 面の境界値は雪氷防災研究センターで計算した値 を設定し、対象領域内の最外部 5 グリッドは領域 外部との緩和領域として計算結果には用いないも のとした。また、予報時間は 2008 年 2 月 12 日午 後 8 時から 3 時間とし、 1 時間毎に結果を出力 するものとした。実行結果については風速を用い て比較するものとした。

4.結果および考察

本研究で対象とした各地域においてフーリエ変換 を行ったことで、各地域において領域内に存在す るパワースペクトルが得られた。図4.1に関東地 域におけるパワースペクトルの分布を示す。関東 地域のパワースペクトルは波長が短いところでは スペクトルは小さく、波長が大きくなるにつれて スペクトルが増大しているという特徴がみられる。 また、波長 20km 以上でスペクトルが集中してい る。尚、関東以外の地域でスペクトル解析を行っ たところ、スペクトルの形や値は各地域に依存す るが、波長が短い場合はスペクトルが小さく、長 くなるにつれて大きくなるという傾向は同じにな った。また、パワースペクトルのピークは2波数 目にあるということが分かった。

4.2 地形エネルギー比

4.1 より、標高データに対してフーリエ変換を 行ったことで、各地域の地形に対するパワースペ クトルを求めることができた。その結果から各地

図 4.1 関東地域の標高データ(上)およびパワース ペクトル分布図(下)。

域のスペクトルを積分し、数値地図、モデル双方 の総エネルギー量の比を求めた。図 4.2 に関東地 域におけるエネルギー比の推移の結果を示す。ま た、本研究における対象地域毎の地形エネルギー 比の推移の結果を表 4.1 に示す。本研究における 関東地域の解析結果より、水平格子間隔 5km ま では 5%/km,5~7.5km までは 11%/km の傾きで 表現力が減少していくという結果となった。また、 関東地域では水平格子間隔が 5km 以上になると 表現力の減少が大きくなるという結果となった。 4.3NHM による計算結果

本研究では山古志地域において地形データのみ を変更してNHMによる風速計算を行った。図4.3 にその結果を示す。計算結果より、風速は特に山

図 4.2 気象庁予報部(上)と本研究の(下)の地形エ ネルギーの比。

表 4.1 各地域における地形エネルギー比の概要

地域	関東	北陸	長岡	山古志
変曲点	5km	4km	4km	3km
最大勾配	11%/km	11%/km	13%/km	7%/km

地においてその差がより顕著に表れた。また、 1km と 3km の地形データで風速の差について比 較したところ最大で約 2m/s,1km と 5km の地形 データで比較したところ風速の差は最大で約 3m/s となった。

5.まとめ

本研究では2次元フーリエ変換を用いて対象地域 の標高データをスペクトル解析し、その結果を地 図とモデルそれぞれについて地形の表現力を比較 した。その結果は以下のようである。また、山古 志地域に関して地形データを変化させて NHM に よる風速計算を行った。その結果をまとめる。

1.対象とした各地域においてスペクトル解析を行ったところ、パワースペクトルは波長が長くなる につれ増大していく傾向にあるが、その形、特徴 については各地域に依存する。

図 4.3 NHM における風速の実行結果。上の図は 1km と 3km の地形データ、下の図は 1km と 5km の地形データにおいて風速を比較したもの。

2.地形エネルギー比はどの領域も格子間隔が大き くなるにつれ一定間隔で減少していき、ある点を 超えると傾きが大きくなる。また、数値地図の標 高データの格子間隔を変化させ、それぞれの格子 間隔についてエネルギー比を求めた結果、概ね同 じ値が得られたため、地形のエネルギー比は数値 地図の格子間隔には依存せず、地形にのみ依存す る。

3.山古志地域において地形データを 1km グリッ ド、3km グリッド、5km グリッドの 3 種類に変 化させて NHM を用いた風速計算を行ったところ、 地形が変化する場所、特に山地において風速の差 が大きく現れた。このことから、NHM による計 算結果に地形データが大きな影響を及ぼすことが 見出せた。

以上より、NHM での計算において正確な結果 が必要である時は地形解像度をより高精度にする こと、ひいては地形をよりよく表現できる水平格 子間隔を設定する必要があると言える。

参考文献

.1999

 (1) 笠原順三,友田好文:コンピュータ地球科 学,67-83pp,東京大学出版会,1993
(2) 気象庁予報部数値予報課:気象庁非静力学モデ ルII,数値予報課報告・別冊第 54 号,2003
(3) 熊倉俊郎,大気と地表面の相互作用における陸 面の影響と挙動について,69-72pp,2004
(4)W.h.H.Press,B.P.Flannery,S.A.Teukolsky,W.T .Vetterling:NUMERICAL RECIPES in C,438-442pp 技術評論社 1993
(5) Rosa Salvador,Josep Calbo,Millan M.Millan :Horizontal Grid Size Selection and its Influence on Mesoscale Model Simulations