建設構造研究室 松岡 徹 主指導教員 長井正嗣

1.はじめに

近年の建設コスト縮減要求に対し,鋼系橋梁では合 理化された合成少数主桁橋が開発されており、更に合 成桁の限界状態設計法開発研究が進められている、本 研究室においても,塑性域での強度を考慮できる新たな 設計法の開発などに取り組んでいる.このうち,部材の 高力ボルト摩擦接合法に目を向けると,我が国では許容 応力度設計法以外の手法が無いのが実情である.その ため,限界状態設計法を適用し,合成桁断面が小型化 しても、ボルトの必要本数が変化しない、そこで、本研究 では,現行の設計法に変わる一層合理化された新しい 高力ボルト摩擦接合設計法の構築を目標とした、しかし、 塑性強度に達する合成桁断面の継手としてボルト接合 を用いる例は極めて少ないことから,本研究では,まず 基礎的な情報を得ることを目的に,模型桁を用いた載荷 試験を行い,ボルト接合部の曲げ挙動特性や強度につ いて検討を行うこととした.

2.曲げ強度解明に関する予備試験

これまで定義されてきたボルト継手部の終局強度はボ ルトのすべり,あるいは母材降伏のいずれかであるが, すべり先行型では,すべり以降も大きな耐力を有するこ とが知られている.一方,母材の降伏は,ポアソン効果 による母材板厚の減少により,ボルト軸力の抜けを招くこ とから,降伏以降の強度上昇が期待できないとされてい る.また,合成桁を対象とし,母材降伏あるいはボルト滑 り以降の挙動を検討した事例は極めて少ない.そのため 事前に継ぎ手部の基本情報を得るために,予備試験を 行い,ボルト接合部を持たない合成桁との比較を行った. 予備試験に用いた模型桁は支間長 8,000mm,中央 1,000mm の等曲げ区間にボルト接合をもつ合成桁であ る.

図-1 に結果を示す. Pp は塑性モーメントに達する荷重 で, Py は降伏モーメントに達する荷重である. 引張側ボ ルトの軸力抜けにより, 降伏後直ちに耐力が失われるこ とを危惧していたが, 塑性強度に近い値が得られた.

3.曲げ強度解明に関する実験概要

予備試験の結果から,終局限界状態において塑性モ ーメントに達する可能性が得られたことにより,更にデー タを蓄積するため下フランジボルト本数の異なる2タイプ の模型桁を作成し,実験を行った.2 タイプ共に支間長 8,000mm,中央1,000mmの等曲げ区間にボルト接合をも つ合成桁である.

本研究では、従来と大きく異なり, すべり限界を終局 (破壊)限界ではなく,使用限界状態と定義した.つまり, 使用時,供用時にはボルトの"すべり"が生じないことを 要求性能とした.また,この限界と,作用力の比率,安全 係数として 1.15 を設定することとした.鋼材の降伏応力 を 300MPa と仮定し,上記安全係数から作用最大応力を 約 260MPa と算定し,ボルト本数を計算した.その結果, 本数は 9.8 本となり, Type-1 では 10 本(図-2)使用するこ ととし, Type-2 では 1 列多い 14 本(図-3)使用することとし た.

鋼部材(鋼系橋梁)のボルト接合に当たり,終局限界状 態での照査方法を明記したものは見当たらない.そこで, ここでは以下の2通りの方法で照査した.

a)終局状態での鋼桁の応力分布は全面降伏応力状態 になる.したがって、必要本数(n)は、

 $n = (降伏応力) \times (鋼断面積)/$

とした.

計算から,必要本数は 23.3 本となり,上,下フランジ及 びウェブに配置した総ボルト数 24 本(TYPE-1)で OK と 判断した.

b)各パーツの終局状態(ボルトせん断破断強度、母材破 断強度、連結板のはし抜け強度)の最小値を合計し,終 局強度とする.これらの計算結果から,TYPE-1 では、 4,604(kN)が,TYPE-2 では 5,344(kN)が得られた.鋼の 仮定した降伏応力が 300MPa,断面積を乗じると,全面 降伏時強度は 4,650(kN)となり,TYPE-1 の強度は若干 小さい設計となった.

1-SPL, PL 350X14X 500 (SM400A) 2-SPL, PL 155X14X 500 (SM400A) 20-HTB M22X90 (F10T)

図-2 下フランジボルト配置(Type-1)

1-SPL, PL 350X14X 660 (SM400A) 2-SPL, PL 155X14X 660 (SM400A) 28-HTB M22X90 (F10T)

図-3 下フランジボルト配置(Type-2)

4.曲げ強度解明に関する実験結果および考察

図-4 に結果を示す.Pp の大きい値は,当研究室を中 心とする研究グループの低減係数を用いた塑性モーメ ントに達する荷重,Ppの小さい値は AASHTO LRFD の 低減係数を用いた塑性モーメントに達する荷重であ る.また,Pyは降伏モーメントに達する荷重である. 2ケース共に,降伏荷重に達する前に線形関係が失わ れている.これは鋼桁の残留応力による影響である と考えられる.2ケース共前述のPpには達しないも のの,Type-2においては AASHTO LRFD の低減係数 による Pp に達することが確認できた.

中央に継ぎ手を持たない合成桁と同様の計算式では, 接合部の正確な強度が算出できないと考え,建築の分 野で使われている式を参考に,図-5 に示すような,最外 縁応力度が引張強さに等しい三角形の応力分布を仮定 した,ボルト接合部を持つ桁独自の強度算出を試みた.

計算から塑性モーメント 2,557(kN·m)が得られたが, 実験値から算出された塑性モーメントは 2,097(kN·m) であり,従来の接合部を持たない合成桁の計算式による 2,272(kN·m)よりも実験値から離れた結果となった.

図-5 接合部強度の一試算

5.結論

使用限界状態で設計したボルト数より若干多い本 数で,塑性強度に達することが確認できた.しかし ながら,接合部の挙動の完全な解明や強度評価のた めの精度良い設計式が開発できなかった.このよう な更なる検討課題が残ったものの,適切なボルト本 数により,降伏後ただちに耐力を失うことなく塑性 強度に達する可能性を示唆することができたと考え る.