洪水流による土砂輸送と地盤標高変化の解析

水工学研究室 野崎 万利子

指導教官 細山田 得三

いる.また本研究では,土砂堆積・侵食の有無は限 界底面せん断力を用いて決定する.底面せん断力を τ_b ,堆積に対する限界底面せん断力を τ_d ,侵食に 対する限界底面せん断力を τ_e とし, $\tau_b < \tau_d$ のとき 堆積, $\tau_e < \tau_b$ のとき侵食が発生するものと考える.

$$\frac{\partial}{\partial t} + \frac{\partial}{\partial x} + \frac{\partial}{\partial y} = 0$$
 (1)

$$\frac{\partial N}{\partial t} + \frac{\partial}{\partial x} \left(\frac{MN}{h}\right) + \frac{\partial}{\partial y} \left(\frac{N^2}{h}\right)$$

$$= -gh \frac{\partial (z^* + h)}{\partial y} + A_h \left(\frac{\partial^2 N}{\partial x^2} + \frac{\partial^2 N}{\partial y^2}\right) - \frac{gn^2}{h^{7/3}} N \sqrt{M^2 + N^2}$$
(2)

$$\frac{\partial M}{\partial t} + \frac{\partial}{\partial x} \left(\frac{M^2}{h} \right) + \frac{\partial}{\partial y} \left(\frac{MN}{h} \right)$$
(3)

$$= -gh\frac{\partial(z^*+h)}{\partial x} + A_h\left(\frac{\partial^2 M}{\partial x^2} + \frac{\partial^2 M}{\partial y^2}\right) - \frac{gn^2}{h^{7/3}}M\sqrt{M^2 + N^2}$$

$$M, N = 0.35h\sqrt{2gh} \tag{4}$$

$$h\left(\frac{\partial c}{\partial t} + u\frac{\partial c}{\partial x} + v\frac{\partial c}{\partial y}\right)$$
(5)

$$= -F_D + F_R + \frac{\sigma}{\partial x} \left(\varepsilon_v h \frac{\sigma c}{\partial x} \right) + \frac{\sigma}{\partial y} \left(\varepsilon_v h \frac{\sigma c}{\partial y} \right)$$

$$q_c = 8.0 \times \left(\tau^* \right)^{3/2} \left(1 - \frac{\tau_c^*}{c} \right)^{3/2}$$
(6)

$$q_B = 8.0 \times (\tau) \quad \left(1 - \frac{\tau}{\tau^*}\right)$$

(7)

$$(1-\lambda)\frac{\partial z_{b}}{\partial t} = -\left(\frac{\partial q_{Bx}}{\partial x} + \frac{\partial q_{By}}{\partial y}\right) + F_{D} - F_{R}$$

(2) 計算条件

図1に地形データ,図2に流量ハイドログラフ, 図3に土砂濃度のハイドログラフを示す.地形デー タはレーザプロファイラによって取得した刈谷田川 のDEM(Digital Elevation Model)を用いる.計算格子 は200×220グリッド,1格子のサイズは5m×5mで ある.洪水流は計算領域の上流端の25mに相当する 5格子に対して流量ハイドログラフを与えることで 発生させる.また洪水流に伴う土砂の流入を考慮す るため,本研究では4種類の粒径を用いて,洪水流 と同様に上流端から土砂濃度を与える.

1. はじめに

新潟県中越地方では 2004 年 7 月 13 日朝から昼頃に かけて新潟県中越地方の長岡地域,三条地域を中心 に狭い範囲で豪雨が発生した.この豪雨により中之 島町を流れる刈谷田川の今町大橋下流左岸では 7 月 13 日 13 時頃に約 50m わたって激しく決壊した.さ らに中之島町では刈谷田川左岸の破堤に伴い広い範 囲に土砂が流出し,土砂堆積による大きな被害を受 けた.

2. 研究目的

本研究では,新潟豪雨による氾濫域の中でも家屋 倒壊が顕著であり,さらに土砂堆積による大きな被 害を受けた中之島町を流れる刈谷田川を対象として, 洪水波のメカニズムおよび洪水によって輸送される 土砂の運動を把握する.また,今町大橋下流左岸の 破堤点に焦点を置き,越流による堤防の侵食および 破堤に至る過程を考慮して研究を行う.また,既往 の研究では破堤点に流量を与えて氾濫流のシミュレ ーションを行っていたが,本研究では河道内部の流 れを破堤のプロセスに組み込んで数値計算を行う.

3. 研究概要

(1) 基礎方程式

本研究では数値モデルは有限差分法であり,計算 格子は直行格子とし,変数の配置はスタガード格子 とする.洪水流の数値計算では平面二次元の基礎方 程式として(1)式の連続式と(2),(3)式の運動方程式を 用いる.また水の流れが不連続となり,水位勾配が 物理的に意味を持たない場合は式(4)の越流公式を 用いる.土砂輸送計算については,浮遊砂は式(5)の 移流拡散方程式,掃流砂は式(6)の掃流砂量式を用い る.地盤標高の変化は掃流砂量 q_B ・土砂堆積量 F_D ・侵食量 F_R を考慮した式(7)の土砂の連続式を用

図3 土砂濃度のハイドログラフ

4. 数值計算結果

図 3,4,5,6,7,8 にそれぞれ数値計算による 12時45分から13時30分までの15分毎の水深,流 速ベクトル,土砂濃度,土砂堆積・侵食,地盤標高 変化および破堤点での横断図を示す.図5および図 7は破堤点周辺を拡大した図である.

図3ではすでに水が高水敷に乗り上げている状況

である.時間の経過とともに水深は上昇し,12時44 分頃より堤防高さを水位が上回り越流が生じたこと で洪水流が流出し始めている.また図4より,流速 は河川の蛇行部で変化し大きくなっている.また洪 水流は道路に沿って流れ,家屋や建物が多く集中し ている区域は洪水流を妨げている.土砂濃度につい ては図5より,洪水流の流出後,破堤点付近の堤内 地で急激に土砂濃度は高くなっているが,これは侵 食作用により地盤が削られているためである.土砂 輸送による土砂堆積・侵食については図 6 より,河 道内部の左右で堆積および侵食が発生していること がわかる、堤内地では破堤点の外側で大きな侵食が 発生している.これは侵食に対する限界底面せん断 力を小さく設定しているためである.図7より,時 間の経過とともに堤防と外側の堤内地は徐々に侵食 され地盤標高は低くなり,地形が変化している様子 がわかる.図8より,河道内部では右岸側の低水路 において侵食が生じ,高水敷および表のり面では堆 積が生じているため地盤標高が変化している、堤防 は 13 時 30 分時点で初期と比べ 8m 侵食され標高は 11.5m となっている.堤内地においては低いところ で 3.2m 侵食され標高は 10.6m となっている.

5. 実現象との比較

計算の妥当性を評価するために計算による堤内地 での最大水深と現地測量による痕跡水深との比較を 行った.図9,10に痕跡水深分布および計算による 堤内地での水深の時系列変化を示す.図中に示す F,G,H,I点はデータの収集地点である.数値計算では 痕跡水深に比べ大きな値となった.F点では地盤の 侵食が生じ標高が低くなったため水深が大きくなっ たと考えられる.

土砂堆積については現地測量による土砂堆積高と 比較を行った結果,部分的には一致するものの一致 しない部分が多かった.図 11,12 に計算による土砂 堆積高の一部と現地測量による土砂堆積高を示す.

(13:30)

図 10 堤内地における水深の時系列変化

図 11 土砂堆積高 図 12 現地測量による土砂堆積高

6. まとめ

本研究では洪水波のメカニズムおよび洪水によっ て輸送される土砂の運動を把握することを目的とし て,非定常流の二次元数値波動モデルと不均等な土 砂輸送を予測するモデルを開発した。また、本モデ ルを用いて刈谷田川における土砂堆積や侵食の進行, 土砂輸送による地盤標高の変化などを予測し,洪水 時に河川から供給される土砂の動態を把握した.そ の結果,刈谷田川の破堤を表現し,土砂輸送による 侵食や土砂堆積が発生することで地盤標高が変化す ることを確認した.計算の妥当性を示す根拠として は最大水深および土砂の堆積高のみであるが、十分 合致しているものではなかった。計算は格子平均、 観測は1点であるため、単純には比較できないが、 定性的には現時点では満足できるものであった。本 研究では地形データや計算パラメータは正確性に欠 ける部分があるため,今後詳細なデータを取得しさ らに高精度の解析を行う必要がある.

7. 参考文献

- 1) 関根正人:移動床流れの水理学,共立出版,2005
- 2) 酒井彩美:微細な地形情報を考慮した氾濫流の数 値計算
- Thin Thin New:Numerical Simulation of Flood Waves in Urban Area with Temporal Changes of Altitude
- 4) 長岡技術科学大学新潟豪雨災害調査団:平成 16 年7月13日新潟豪雨災害調査報告書