建設工学課程水工学研究室 成田 浩明

1. はじめに

平成19年7月16日に新潟県中越沖地震が発 生した.この地震のマグニチュードは 6.8,最 大震度は6強を記録し,新潟県の中越地区,特 に柏崎市周辺に甚大な被害をもたらした.この 地震により,最大波高約 30cm と小規模ではあ るが津波が発生し,秋田県や石川県の沿岸まで 津波が到達したことが観測された。この津波に よる被害は特に見られなかったが,甚大な被害 をもたらすような大きな津波が来襲するのは、 10 年あるいはそれ以上の期間に一度という程 度であるので,小規模の津波であってもその挙 動を把握しておくことで,防災に役立てること は出来る.そこで本研究では,陸に挟まれた浅 海域での津波の動態を把握するために,中越沖 地震により発生した津波の数値シミュレーショ ンを行い,その動態を再現して新潟県沿岸での 津波の挙動を調べた.また,津波の屈折図を作 成して津波の伝播状況を調べ,津波の集中する 箇所も同時に調べた.

2. 数值解析

(1) 計算方法

津波の数値シミュレーションは,以下に示す ように運動方程式と連続式を陽的に差分する手 法を利用して計算を行った.津波を起こすため の水位の変動量は断層モデルを用いて計算を行 った.また,津波の屈折計算は,波線の方程式 を利用した波の屈折計算モデル(図-1)を用 いて計算を行った. 1)運動方程式

(a) 経度方向

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} - fv + g \frac{\partial \xi}{\partial x}$$

$$- A_h \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) + \frac{gu \sqrt{u^2 + v^2}}{(\xi + h)C^2} = 0$$
(b) 緯度方向

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + fu + g \frac{\partial \xi}{\partial y}$$
$$- A_h \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) + \frac{g v \sqrt{u^2 + v^2}}{(\xi + h)C^2} = 0$$

2)連続式

$$\frac{\partial \xi}{\partial t} + \frac{\partial}{\partial x} \left\{ \left(\xi + h \right) u \right\} + \frac{\partial}{\partial y} \left\{ \left(\xi + h \right) v \right\} = 0$$

ただし,

h:水深(m), :水位(m), f:コリオリ係数 (=2 sin), A_h:渦粘度(m²/s), A_v:垂直粘度 (m²/s), C: Chezy 係数

3)波の屈折計算モデル

図 - 1 において時刻 t と t+ t の波面を PQ と P'Q'とする. P 点の波速 C に対して,Q 点 の波速は C+(C/ n) n である. C/ n > 0 のとき,波線は右方に傾く,波線が x 軸とする 角を P 点で ,P'点で + とすれば, <0 である.また s=C t と表される.

P'から QQ'への垂線の足を R とすれば, RQ'=QQ' - PP'={C(Q) - C(P)} t=(C/ n) n・(s/C)である.一方,図示するように,RQ'= n・(-)である.すなわち,次のように置 ける.

$$RQ' = \frac{\partial C}{\partial n} \cdot \frac{\Delta s \cdot \Delta n}{C} = -\Delta n \cdot \Delta \alpha$$
$$\therefore \frac{d\alpha}{ds} = -\frac{1}{C} \frac{\partial C}{\partial n}$$

これは波線の方程式を表す.これを利用して 屈折図を作成することができる.

図-1 波の屈折計算モデル

(2) 計算領域及び震源位置

計算領域は図 - 2 に示すように北緯 37~ 39°, 東経 137~140°(およそ 267,000× 222,000m)の範囲をメッシュ間隔 500m で分 割した.震源位置は北緯 37°33 24 ,138° 36 24 である.

図-2 計算領域及び震源位置

- 3. 計算結果
- (1) 津波シミュレーション

可視化した計算結果を図 - 3 に示す.上から それぞれ津波発生から5分後,10分後,20分 後の様子である.白色に近づく程,波高が高い ことを意味している.

図 - 3 シミュレーション結果 (上:津波発生より5分後, 中:10分後,下:20分後)

図 - 3 を見ると,20 分後には石川県沿岸まで 津波が到達しているのがわかる.その一方で震 源の北側では佐渡島と本州に挟まれた佐渡海峡 を抜けたあたりまでしか伝播していない.長波 の波速は水深にのみ依存するので,水深の深い 佐渡の西側では津波が早く伝播し,水深の浅い 陸沿いを北上する津波の伝播速度は遅いことが わかる.また,佐渡海峡では本州と佐渡の反射 波の影響により複雑な水位変動を示しているこ とがわかる.

図 - 4 に波高分布の図を示す.数値計算によ り算出された最大波高は柏崎周辺で44cm,小 木周辺で31cmとなった.国土地理院国土地理 院によると,柏崎の験潮所で33cm,小木の験 潮所で27cmの津波が観測されているので,計 算結果は実測値と近いものになったと言える. また,地震調査委員会の発表では柏崎港で1m の津波が観測されている.これは,国土地理院 の験潮所と柏崎港が400mほど離れており,ま た柏崎港は震源に向かって開いているため,波 が集中し局地的に高い津波が観測されたものと 考えられる.

図-4 波高分布

(2) 波の屈折計算

津波の屈折計算の結果を図 - 5 に示す.この 屈折図によると,波線の多くは柏崎沿岸と佐渡 南岸に集中していることがわかる.このため震 源から発生した津波の多くはその地点に集中し たと考えられ,実際に最大波高を記録した箇所 と一致しているといえる.

また,屈折図の波線より柏崎に向かう波線の 一つを取り出して,震源から柏崎までの津波の 到達時間も計算した.その結果,津波の到達時 間は約11分半となり,時刻にすると10時24 分30秒となった.国土地理院の柏崎験潮所で 観測された津波の最大波高観測時間と約2分の 誤差が生じている.これは,取り出した波線の 位置が柏崎験潮所の位置から西に4km ほどず れているためであると考えられる.

次に,津波シミュレーションの結果より佐渡 海峡で波が反射しているのを確認したので,反 射した津波の挙動を知るために最大波高を記録 した柏崎と小木で反射した波の屈折図を作成し た.その結果を図 - 6,図 - 7に示す,図 - 6を 見ると,柏崎で反射した津波はそのほとんどが 大きく屈折して本州側へ戻っており,一部が佐 渡へ向かっていることがわかる.

また,図-7を見ると,小木で反射した津波は 半数近くが大きく屈折して佐渡へ戻り,もう半 数は本州に向かっていることがわかる. どちら の反射波も沖へはあまり向かっていないことが わかる.

このように波は海底形状や海岸部の影響を強 く受けるために、佐渡海峡のような陸に挟まれ た地点では複雑な挙動を示すこととなる また, 第1波が終わっても,屈折や反射の影響で,第 2波,第3波に対しても警戒しなくてはならな いということが言える.

4. まとめ

新潟県沿岸の海域は,海底と海岸の形状が複 雑なため,反射や屈折により津波が本州と佐渡 の間を振動することを確認できた.

数値計算の結果,最大波高を記録した柏崎と 小木の周辺に津波が集中することを確認した. このことから,数値計算の結果が実津波の挙動 をよく再現できていることがわかった.今回の 津波は水位があまり大きくなかったため大きな 被害は出なかったが, 佐渡海峡のように水深が 浅く,陸に挟まれた場所で大きな津波が発生す ると、津波が何度も押し寄せるため大変危険で あると言える.

参考文献

- 1) 犬飼直之: 渤海の海水交換機構についての 研究,土木学会,海岸工学論文集,第48巻, pp.1046-1150, 2001.11.
- 2) L.Mansinha : THE DISPLACEMENT FIELDS OF INCLINED FAULTS , Bulletin of the Seismological Society of America , Vol.61 , No.5 , pp.1433-1440 , 1971
- 3)柄沢篤志:広域閉鎖性水域の海水交換機構 に関する研究,長岡技術科学大学工学研究 科修士論文,2005
- 4) 宇野木早苗:沿岸の海洋物理学,東海大学 出版会
- 5) 新潟県中越沖地震の評価, http://www.jishin.go.jp/main/chousa/07jul _chuetsu_oki/index.htm , 地震調査委員会 , 2007
- 6) 国土地理院, http://www.gsi.go.jp/, 国土交 通省国土地理院, 2007