環境防災研究室 堀口 大樹 指導教官 大塚 悟

1. はじめに

地震により造成地が崩壊する現象は阪神大震災 や新潟県中越地震をきっかけに知られるようになっ た. 従来の宅地造成の基準は,集中豪雨などによ る表層の崩壊対策に主眼を置いており, 地震により 引き起こされる崩壊に対する対策などなかったため、 この基準の改正が行われた.この改正では力学的 特性が必要であるが、甚大な被害を及ぼす可能 性のある危険な大規模谷埋め盛土は, 全国に無 数に存在しているため,全てを調べるためには 多大な労力とコストがかかることが予想される. このため、より危険で早急に調査しなければな らない箇所の絞込みを行う必要がある.これに は地理情報システム(GIS)を用いて広域的に 処理することが非常に有用であるため,本研究 では, 地理情報を用いて新潟県中越地震におけ る宅地被害を対象とし、地盤変状被害との相関性 などの検討を行い, 今後 GIS で行われる危険度判 定に用いられるモデルの検討を行うものとする.

2. 長岡・小千谷地区の建物被害分析

長岡市・小千谷市の建物倒壊率を,常時微動計測(豊田高専との共同研究)より分析を行った.常時微動から求められる卓越周期や 平均倍率(水平動(H)と上下動(V)の平均的な 割合,地盤における水平方向の揺れ易さを表す 尺度)のほか,地盤の標高,マクロ傾斜角を用 いて建物倒壊率との相関性を重回帰分析によ り調べた.

図-1 に長岡市の倒壊率(半壊以上)の分布, 図-2 に小千谷市の倒壊率(半壊以上)を示す. 今回の分析では軽微な損壊事例は無数に存在 するために,倒壊率を半壊以上の戸数で算出 した.図-1 では長岡市の東山丘陵部に倒壊率

図-1 長岡市倒壊率分布

図-2 小千谷市倒壊率分布

の高い地域が集中し,長岡市街地及び西山丘 陵部は倒壊率が低くなっている. 全般に山間 部は地盤変状に伴って家屋被害を反映して, 倒壊率の高い傾向がある.また,平野部にお いても信濃川下流域では若干倒壊率が高い傾 向がある.図-2の小千谷市では全域において 長岡市に比べ高い倒壊率を示す.また、その 分布では長岡市同, 様山間部で倒壊率の高い 傾向がある.このため山間部の多い小千谷市 では信濃川に沿い倒壊率の低い地域が分布し ている. 重回帰分析の結果を表-1 に示す. こ の結果によると信頼度は低いものの決定係数 は比較的大きく,各要因との相関性の高さが 伺える.要因では標高の影響が大きく現れた が、特に小千谷市の段丘地形が地質や、振動 特性との相関のあることに起因すると考えら れる.

表-1 重回帰分析結果

	偏回帰係数	標準化回帰係数	
卓越周期	-21.122160	-0.070064	
平均倍率	8.213608	0.133530	決定係数
速度本震	0.238977	0.162089	0.534
標高	0.141589	0.329752	F 検定によ る信頼度
傾斜角	1.009198	0.199706	0.000022

3. 高町団地の地震被害

高町団地は昭和 50 年代後半に長岡市の東 縁丘陵に造成開発された.地質は砂質シルト の御山層であり,切土材を盛土に転用してい る.地震被害の分析を目的に,造成開発前後 の地形情報より GIS を用いて切土及び盛土の 高さに関する推定図(図-3)を作成した.造 成地中央部に切土領域があり,周辺を盛土で 造成している.図4は盛土の分布と地震被害 (地盤の亀裂,斜面崩壊,建物被害)の発生箇 所を重ね合わせたものである.主な亀裂の約 70%,斜面崩壊地の 100%が盛土部に発生し ている.建物被害も盛土近傍に集中すること が分かる.

図-3 切盛り分布と主要断面

図-4 盛土と高町被害分布

図3の切盛り推定図の精度を確認するため に,図3に示す盛土崩壊箇所近傍(A地点) と盛土未崩壊箇所(B地点)の2箇所で表面 波探査を実施した.得られたS波速度構造を 図-5,図-6に示す.図中の黒点線は表面波探 査から推定される切盛り境界である.表面波 探査はボーリング調査と平行して実施して切 盛り境界に当たる応答速度から160~170m/s の地点を盛土境界と判定した.青い実線は地 形数値モデルより算出した結果を示すが、A 地点については表面波探査の結果と概ね一致 するのに対して, B 地点では大きく異なる結 果となった.これは造成地開発前の地図の精 度に起因すると考えられることから、開発以 前の航空写真による測量を行うなどの対策 (実施中)が必要である.

4. 高町団地の建物被害分析

建物被害に関して図7に切盛り厚(マイナ スは切土を表す)と建物被害戸数(危険家屋 と要注意家屋)との関係を示した.相対的に 盛土部に多くの被害が見られるが、切盛り境 界付近では切土部にも被害が多数発生してい る.図6は切盛り厚と地表面の亀裂発生地点 の関係を示す. 亀裂は長さ 50cm に分割して1 単位とカウントした. 延長の長い亀裂は数単 位とカウントし、それぞれの切盛り厚に関連 付けている. 図から地表面の亀裂は建物被害 と同様に盛土部に多数発生するが、切盛り境 界付近を中心に切土部にも発生していること が分かる.図7.8から建物被害と地表面の亀 裂には高い相関関係が成立している. 宅地造 成地では盛土部における地震被害の危険性が 指摘されているが, 盛土の変位や崩壊に伴っ て切盛り境界付近における切土でも地震被害 が発生することが分かる.

図 9 は建物被害と盛土及び亀裂の相関関係 を示す.家屋の被災率は高町全体の統計に対 して,盛土部で約2倍,地表面の亀裂上に位

置する場合に約3倍の高い結果となった.地 震後の現地調査から高町団地では地震動によ る建物被害より,地盤変状(亀裂や不等沈下) による被害が大きいことが明らかにされてい る.したがって,土地造成地における切盛り 情報のほかに,亀裂や不等沈下の発生位置の 推定が加われば宅地の高精度な被害予測が可 能と考えられる.

盛土の底面形状の差異による亀裂発生位置 の分析を目的に,盛土主断面(谷筋に一致) の底面形状を凸型(山型),直線型,凹型(船 底型)の3つに分類(図-10)し,主断面から 左右 5m以内の盛土領域内での亀裂数を各形 状で集計した.

図8に亀裂の盛土相対位置:y/H(亀裂の法 面からの距離:y,主断面の最大盛土厚:H) と亀裂の発生割合を示した. 亀裂の発生割合 は y/H を 0.5 刻みで集計して算出した. 全体 的に y/H が小さい(斜面法肩近傍)領域にて 亀裂が多数発生するが, y/H=2 前後に発生す る比率が高い傾向がある.盛土底面が凹形状, 直線形状の場合は y/H>3 にて亀裂発生割合 が少ないのに対して,凸形状の場合は y/H=4 前後で比較的高い結果となった.原地盤の地 形との相関については今後の課題である.

5. 結論

(1) 長岡・小千谷の建物被災率(半壊以上) は卓越周期,平均倍率,標高,地盤傾斜角, 本震速度と高い相関を示した.

(2) 高町団地の地形解析の結果,建物被害は 盛土部に集中するが,盛土周辺切土地域にも 地盤変状の影響により被災する事例が多いこ とを示した.

(3) 高町団地の地震被害に関して, 亀裂の発 生位置と盛土形状, 盛土高さ, 旧地形傾斜角 との相関関係を示した.

図-10 盛土底面形状による分類

謝辞:本研究は文部科学省科学技術振興調整 費(活褶曲地帯における地震被害データアー カイブスの構築と社会基盤施設の防災対策へ の活用法の提案,研究代表者:小長井一男) の支援を受けた.また,長岡市及び中央グル ープ(株)にデータ提供を受けた.ここに記し て謝意を表します.