Ni-Co 系サーメット燃料極におけるメタン酸化反応活性

指導教員 佐藤 一則 環境材料科学研究室 宮下 知樹

<u>1. 緒言</u>

近年、石油や天然ガスなどの化石燃料によるエネルギーの消費量が飛躍的に増大し、これらエネ ルギー資源の枯渇が懸念されている。その一方で、エネルギー消費によって排出される大量の二酸 化炭素が地球の気温を増加させる主要因となっている。エネルギー資源の有効利用のためには、低 効率な発電方式の効率を高め、廃熱利用することにより、省エネルギーの促進を図る分散型発電方 式、いわゆるコージェネレーションの普及や、新技術による高効率なエネルギー変換をもたらす新 しい発電システムの構築が必要である¹⁾。燃料電池は、天然ガスやメタノールなどの燃料を酸化剤

と電気化学的に反応させることによって化学エネル ギーを直接電気エネルギーに変換することが出来る。 発電効率も燃料電池単体で約 50%と高いうえ、廃熱 を利用したコージェネレーションも加味すれば約 70%以上の発電効率を得ることが出来る。燃料にバイ オマスを用いれば、自然界のエネルギー循環過程から 燃料を取得することになるため、地球環境への負荷は 大幅に減少することが可能となる。

<u>2. 目的</u>

固体酸化物燃料電池(SOFC)の動作原理を Fig.1 に 示す。SOFC はメタンの直接利用が原理的に可能である。 しかし、メタンの熱分解反応による Ni 粒子表面への炭素 析出および生成 CO による表面被毒が電極反応活性 低下をもたらす。本研究では、メタンの完全酸化反応に 有利な低温動作においても高い酸化物イオン伝導性を 発する Ceo.sSmo.2O1.9(SDC)電解質(Fig.2)、及び酸化 物状態で CO に対し高い酸化触媒活性を持つ Co を Ni に置換固溶させた Nii-xCox/SDC サーメット燃料極

(X=0、0.25、0.5、0.75)に着目した。低温領域に おける発生起電力、放電電流密度および燃料極分極 抵抗の測定を行い、メタンの直接酸化に対する Ni₁-xCox-SDC サーメット燃料極の活性化効果につ いて、水素を用いた場合と比較検討を行なった。さ

Fig.1 固体酸化物燃料電池の動作原理

Fig. 2 各種固溶体のイオン導電率と温度の関係²⁾

らに、X 線回折、走査型電子顕微鏡による試料観察、および生成ガス組成分析から Nii-xCox-SDC サーメット燃料極によるメタンのアノード酸化反応活性化機構について考察した。

3. 実験方法

NiO と Co₃O₄をモル比で混合、1000[°]C、10 時間で 2 度焼成し、Ni₁·xCox 系固溶体粒子を作製した。この固溶体粒子に SDC 粉末を 6:4 の重量比で混合し、バインダーを用いて電解質に塗布、1300[°]C、5 時間で焼成し燃料極とした。空気極は Sm_{0.5}Sr_{0.5}CoO₃(SSC)と SDC を 7:3 の重量比で 混合し、燃料極と同様に電解質へ塗布、1200[°]C、5 時間で焼成した。集電体は、3×3 mm の Pt メ ッシュと 2 cm の Pt 線をスポット溶接し、Pt ペーストを用いて両電極上に Pt メッシュ部を塗布、 1050[°]C、1 時間で焼成し、単セルとした。供給ガスは燃料に水素及び 10 vol.%メタン(He 希釈)、 酸化剤に酸素を用い、それぞれ 20 cm³/min とした。放電特性、過電圧測定を行い、燃料極から排 出されるガスをガスクロマトグラフを用いて分析した。また、X 線回折(XRD)及び二次電子像 (SEM)を用いて燃料極における微細組織変化について観察し、発電性能に対する影響について検討 した。

4. 結果および考察

Ni1-xCox-SDC サーメット燃料極において、 700℃における水素およびメタンに対する、放電 電流密度と端子電圧の関係および放電電流密度 と発生電力密度の関係 (*J-V* 特性、*J-P* 特性)を Fig.3に示す。Ni1-xCox-SDC サーメット燃料極に おける Co モル濃度が高くなるにつれ、出力密度 も増加し、水素およびメタンに共に Co 50 mol% において最も高い電力密度を示した。これは、 Ni1-xCox-SDC 燃料極を用いた場合、電池性能 は Co 濃度に依存し、Co 濃度に適正値が存在す ることを示唆している。

燃料極微細組織を観察した結果を Fig.4 に示 す。Ni1-xCox-SDC 燃料極の微細組織を観察し たところ、Co モル濃度増加に伴い、Ni1-xCox 粒 子および SDC 粒子共に凝集、粒子成長が生じて いることが確認された。X 線回折パターンから、 Ni0.25Co0.75-SDC 中に Co3O4 が存在することが 明らかになった(Fig.5)。Co3O4 の融点は 920℃ と酸化物の中でも特に低温である。Ni0.25Co0.75O

粒子と SDC とのサーメット化における Co₃O₄の液相化は焼成時において、(1) 液相の生成により、粒子の再配列がおき、 より効果的な充填状態となると共に緻密 化が生じる、(2)液相を通じての物質移 動により、焼結過程において小粒子の溶 解と大粒子の成長が起こる3、といった現 象を生じると考えられる。そのために Ni_{1-x}CoxO 粒子だけでなく SDC 粒子も 同時に凝集、粒子成長及び緻密化が生 じたものと考えられる。この粒子成長は Ni_{1-x}CoxO 粒子/SDC 粒子界面の接触 性を向上させ、粒界抵抗の低下に寄与す るものと考えられ、Ni1-xCox-SDC 燃料極 における導電率4の向上が粒子成長に起 因することが分かっている。しかし、X=1 では Co-SDC 燃料極が SDC 電解質から 簡単に剥離してしまい、Co モル濃度比が 高い場合、燃料極/電解質の接合性が弱 くなるといったデメリットを有する。そのた め、Co モル濃度に伴う、燃料極の微細組 織変化が電池性能に大きな影響を及ぼし ているものと考えられる。

また、メタン酸化反応活性について検討 するため、700℃において燃料極から排 出されるメタン酸化反応後のガスについ て組成分析を行った結果を Fig.6 に示す。 全組成において、放電電流密度に対す るそれぞれの生成ガス量がほぼ近似する 結果となった。この結果からメタン酸化は

Fig.4 Ni_{1-x}Cox-SDC サーメット燃料極表面における 二次電子像 (A) X=0、(B) X=0.75

Fig.5 Ni_{1-x}CoxO-SDCのX線回折パターン

電流密度、すなわち空気極から供給される酸化物イオン量によってメタンの酸化が決まることを示唆しており、メタン酸化に対する Co の化学的影響がほとんどないことを示唆している。つまり、Ni に対する Co 固溶 に伴う電池性能への影響は、Co の化学的特性に比べ、固溶合金化によって生じる電極微細組織変化が 支配的であると考えられる。また、全ての組成について、OCV (Open Circuit Voltage:開回路電圧)において H₂、CO、CO₂、それぞれの生成ガスを検出した。これは、(1)式のような、SDC 格子中のセリウムイオン

が+4 価から+3 価に還元され、SDC 中の格子酸素がメ タンと反応したために各生成ガスが生じたと考えられる。 H2および CO の生成量が著しく多いことから、(2)式のメ タン部分酸化反応が支配的であると考えられる。

$$CeO_2 + yH_2 \rightarrow (Ce^{4+}, Ce^{3+})O_2 - y + yH_2O$$
 (1)
 $CH_4 + O^{2-} \rightarrow CO + 2H_2 + 2e^{-}$ (2)

また、OCV から 300 mA/cm²の放電電流密度領域 では、CO 生成量が CO₂生成量に比べて非常に多く、 H₂ / CO 比が約 1.7 であることから(2)式のメタン部分酸 化反応が支配的に生じていると考えられる。ここで、例と して 200 mA/cm²における空気極側からの電解質透過 酸化物イオン量は約 24 μ mol/min である。しかし、CO および CO₂ から換算した使用酸化物イオン量は約 38 μ mol/min であった。実際に使用された酸化物イオン 量が放電電流密度から換算した理論酸化物イオン量よ りも多いことから、(1)式のセリウムイオンの還元によって SDC 結晶格子から放出される酸素がメタン酸化反応に 寄与しているものと考えられ、この放電電流密度領域に おけるアノード反応は(1)と(2)式の反応が支配的かつ並 発的に生じていると考えられる。

しかし、約 300 mA·cm⁻²以上の電流密度領域では、H₂ および CO の生成量が急激に減少し、同時に CO₂ 生成 量が大幅に増加した。ここでは、(3)式のメタン完全酸化 反応が支配的であると考えられる。なお、メタン完全酸化 反応により、H₂O が生じていることから、メタンの改質反応 (4)および(5)式が生じ、より Ni との親和性が高く、反応 性の高い H₂⁵⁾が燃料極での反応に寄与したため、CH₄ 転換率は減少したものと考えられる。また、例として 400 mA·cm⁻²における放電電流密度から換算した電解質透過 酸化物イオン量は約 48 μ mol/min である。

Fig.6 各組成における発生電流密度と 生成ガスの関係 (700℃、Anode: Ni_{1-x}Co_x-SDC)

$CH_4 + 4O^{2-} \rightarrow CO_2 + 2H_2O + 8e^{-1}$	(3)
$\begin{array}{rcl} \mathrm{CH}_4 + \mathrm{H}_2\mathrm{O} \ \rightarrow \ \mathrm{CO} \ + \ 3\mathrm{H}_2 \\ \mathrm{CH}_4 + 2\mathrm{H}_2\mathrm{O} \ \rightarrow \ \mathrm{CO}_2 \ + \ 2\mathrm{H}_2\mathrm{O} \end{array}$	(4)
	(5)

それに対し、CO および CO₂ 生成量から換算したメタン酸化反応に寄与した見かけ上の酸化物イオン量 は約 40 μ mol/min であった。この差は、メタン完全酸化反応などで生成された H₂O をガスクロマトグラフ で測定していないことから、H₂O 生成に寄与した酸化物イオン量を考慮していないことに起因する。この放 電電流密度領域では空気極から供給される電解質透過酸化物イオン量がメタン酸化に対し十分なため、 (1)式のセリアの還元が抑制され、SDC 格子中の酸素がメタン酸化反応に寄与しないと考えられる。

以上より、燃料極での反応は全体的には(1)、(2)、(3)式の並発反応で進んでいると考えられる。低温に なるにつれ、全ての組成において、H₂、COの生成量が減少する一方でCO₂生成量が増加し、低電流領 域においてよりメタン完全酸化反応が円滑に生じていると考えられ、炭素や一酸化炭素による燃料極表面 への被毒の抑制等につながると考えられる。つまり、低温動作化は低電流領域においてもメタンの完全酸 化反応に有利であり、より内部抵抗の低い構成材料などを選定することで電池性能は向上するものと考え られる。

5. 結論

Ni₁-xCox/SDCサーメット燃料極におけるCoのモル濃度増加に伴い、発電性能は向上し、X=0.50 において最も高い値を示した。本燃料極におけるメタンのアノード酸化反応活性効果を、生成ガス 分析により検討した。低電流密度領域においてメタンは部分酸化反応活性を高め、高電流密度にお いては、メタンは完全酸化反応にシフトすることを見出した。Coモル濃度がNi₁-xCox/SDCサーメ ットにおけるメタンの酸化触媒能に与える影響はほとんど見られず、Co固溶に伴う発電性能の向上 はCoの化学的特性に起因しないことが明らかになった。

二次電子像観察、燃料極過電圧、Ni₁xCox/SDCサーメット燃料極比表面積測定からCoのモル濃 度増加に伴うNi₁xCox 粒子およびSDC粒子の同時成長が、燃料極/電解質界面および燃料極粒子間 の接合性向上をもたらし、酸化物イオンおよび電子の混合伝導性の向上が電池性能を高めることが 示唆された。しかし、Coモル濃度が100%では燃料極と電解質が簡単に剥離することから、Ni基SDC サーメットに対するCoによる置換固溶は、Coモル濃度によって電解質との接合性に影響をもたら し、電池性能に大きな影響を及ぼすことを示した。 【参考文献】

- 1) 石丸公生,「地球にやさしい天然ガス燃料電池」, pp. 2, 日刊工業新聞社, (1994).
- 2) H. Inaba and H. Tagawa, *Solid State Ionics*, vol. 83, pp. 1–16, (1996).
- 3) W. D. Kingery, H. K. Bowen and D. R. Uhlmann, 「セラミックス材料科学入門 基礎編」, 内田老 鶴圃, pp.481-484, (1981).
- 4) 加藤幸人, 長岡技術科学大学修士論文, (2005).
- 5) 田川博章,「固体酸化物型燃料電池と地球環境」, pp. 177-188, アグネ承風社, (1995).