1. はじめに

我々の日常生活の結果排出される都市下水の多 くは、好気性微生物の働きを利用した活性汚泥法に より処理されているが、莫大な電力消費や、余剰汚 泥発生の問題などがある。一方、上向流嫌気性汚泥 床法(Upflow Anaerobic Sludge Blanket: UASB)は、排 水処理の結果エネルギーとして利用可能なメタン を生成できることや、余剰汚泥の発生量が活性汚泥 法に較べて 1/5 から 1/10 程度と少ない。しかし、都 市下水の嫌気性処理法においては二つの課題があ る。第一の課題は、下水のような低濃度有機性排水 種の処理においては、処理を担う嫌気性微生物膜の 形成・維持が困難なために良好な処理水質が得られ ないことである。第二の課題は、生成されたメタン の一部が物理的作用によって処理水に溶存するた め、エネルギーとして利用可能なメタンの回収量が 減少するだけでなく、処理水の溶存メタンがいずれ は大気に気散し、地球温暖化の一因となることであ る。

そこで本研究は、都市下水の嫌気性処理法におけ る二つの課題の対策法の確立を目的とした。

2. 第一課題対策

都市下水のような低有機性排水の処理に有効で あると考えられている嫌気性処理法の Expanded Granular Sludge Bed (EGSB)リアクターを用いて都 市下水の連続排水処理実験を行った。

2-1. 実験方法

Fig. 1 に、本研究で使用した排水処理プロセスの 概略図を示した。処理プロセスは長岡中央浄化セン ターの沈砂室に設置させていただき、連続下水処理 実験を行った。処理プロセスは、沈殿槽、EGSB リ アクター、2 段式 DHS リアクターの3 要素から構成 されている。前段の嫌気性排水処理プロセスである EGSB リアクターは、2005 年 1 月 19 日より運転を 開始した(運転開始0 日目)。運転開始後 218 日目に

水圈土壤環境制御研究室	西山桂太
指導教官	大橋晶良

は、EGSB リアクターの流入部に沈殿槽を設けた。 後段の好気性排水処理プロセスである 2 段式 DHS リアクターは、EGSB リアクターの運転開始後 403 日目より運転を開始した。

Fig. 1 Schematic diagrams of whole system in this study. 1, sludge bed; 2, sampling port; 3, Gas-Solid Separator (GSS); 4, scum breaker; 5, gas bag; 6, pump; 7, distributor; 8, wet-test gas meter; 9, H₂S trap; 10, water seal; 11, sponge; 12, gas sampling port; 13, sampling port.

前段のEGSB リアクターは高さ4.4m(カラム;4.0 m、GSS; 0.4 m)、カラム内径 0.13 m(GSS 上部内径 0.3 m)、全容積は71 L(カラム:53 L,GSS:18 L)である。 h/d 比(height/diameter ratio)は、31 である。リアクタ ーは温度制御せずに、常温条件下で実下水を供給し た(9-27℃)。植種汚泥として、中温(35℃)グラニュー ルを1670gVSS/reactor投入し、運転を開始した。運 転開始後 29 日目には処理流量 850 L/day、HRT2.0 h の一定条件下で運転した。また、運転の継続に伴っ て GSS にスカムの蓄積が確認されたため、流入下 水の SS 濃度を低減するため、運転開始後 218 日目 に EGSB 流入部に沈殿槽を設置した。沈殿槽は、全 容積 300 L であり、設計滞留時間は、およそ 5.6 時 間である。後段の2段式DHSリアクターは、カラ ム高さが 2.0 m、カラム断面形状は一辺が 0.2 m の正 方形を有し、容積は 80 L である。カラム内にポリ ウレタン製のカーテン型スポンジを 35 L 充填した (スポンジ充填率:44%)。処理流量は運転期間を通じ て 420 L/day、HRT2.0 h(based on sponge volume)の一 定とした。1 段目の DHS リアクター(1st DHS)への空 気供給量は、空気供給量の制御が可能なポンプで行 い、運転期間中は、状況に応じて順次供給量を変更 した。2 段目の DHS リアクター(2nd DHS)への空気供 給量は、エアーポンプで過剰な空気量を供給した。

2-2. 実験結果および考察

2-2-1. 連続排水処理性能

EGSB リアクターと2段式 DHS リアクターによ る連続排水処理実験結果を、Fig. 2に示した。運転 開始後218日目にはEGSBリアクターの流入部に沈 殿槽を設けた。沈殿槽設置前は、EGSB リアクター の上部にスカムの蓄積が見られ、処理水質が不安定 であった。低温条件下において下水の高速処理を行 う場合、加水分解で律速して SS の分解が進行せず (Rebac et al., 1997; Zeeman et al., 1997; Elmitwalli et al., 2002; Mahmoud et al., 2004)、それがリアクター内に 蓄積、あるいは未分解で排出されるという現象が本 研究でも明らかとなった。スカムの蓄積の問題は、 連続実験をする上で解決しなければならない問題 であったため、流入下水の SS を低減させてスカム の蓄積を防ぐことを目的として、運転開始後219日 目にリアクター流入部に沈殿槽を設けた。沈殿槽の 設置後は、流入のSS だけでなく処理水のSS も安定 した。また、リアクター内でのスカムの蓄積も見ら なくなった。さらに、沈殿槽設置前と比較して、設 置後では有機物除去が向上したように見える。そこ で、沈殿槽設置前と設置後の全 CODcr 除去率を比 較したところ、設置前で外気温が20℃以下において は36%であったものが、設置後においては44%と向 上した。また、外気温が20℃以上においては、沈殿 槽設置前の全CODcr除去率が19%であったものが、 沈殿槽設置後には43%と向上した。このことから、 沈殿槽の設置は、有機物除去率の向上に影響を及ぼ したと推測される。

本研究で用いた2段式 DHS リアクターによる排 水処理性能は、これまでの DHS リアクターの処理 性能(Agrawal *et al.*, 1997; Machdar *et al.*, 1997)と比較 して低い結果となった。1st DHS リアクターは溶存 メタンの回収を目的としているため、空気供給量を 制御して運転していることから、有機物を生物学的

に酸化するのに要する酸素が不足したと推測され る。一方、2nd DHS リアクターは過剰な空気を供給 していたため、有機物を酸化するのに要する酸素は 十分リアクター内に供給されていた。処理性能が低 い理由として考えられるのが、DHS 内での短絡流の 発生と、スポンジ付着汚泥が肥大化することでいず れは剥離して処理水質が悪化したものと推測され る。DHS 内での短絡流と汚泥の肥大化は、目視で確 認できた。短絡流の問題は、流入水の散水方法の改 良と DHS の構造を変更することで改善できるもの と考えられる。一方、汚泥の肥大化の問題は、DHS 内でのハエの生息が確認できなかったことから、ハ エによる汚泥の捕食がないためだと考えた。そこで、 2006 年 9 月 12 日に、2nd DHS リアクターの側面に 設置したポートを開放してハエを取り込んだ。ポー ト解放後の2006年9月15日には、DHS内にハエが 取り込まれた様子を確認することが出来た。ポート を開放してから14日後の2006年9月26日には、 肥大化した汚泥が見られなくなったことから、これ をハエによる捕食によるものと考えた。

2-2-2. EGSB リアクターにおける COD 収支

Fig.3にEGSB への流入COD に対するCOD 収支 結果を運転運度ごとに示した。沈殿槽設置前は、リ アクター内でのスカムの蓄積等の問題があったた め、COD 収支が合わなかった。沈殿槽設置後は、 設置前に較べて COD 収支が合うようになってきた が、依然として不明分が生じる結果となった。しか し、沈殿槽設置後は、運転温度が高くなるにつれて COD 収支の不明分が少なくなる傾向が見られた。 また、COD 収支に占めるメタン生成の割合は、温 度が高くなるにつれて増加する傾向が見られた。一 方で、硫酸還元(Sulfate Reducing Bacteria: SRB)によ る COD 消費が占める割合は、温度が低下するに従 って増加する傾向にあった。嫌気性コンソーシアム 内においてメタン生成古細菌と硫酸還元細菌が競 合関係にあり、排水中の COD と SO4²の比率や温度 などの各条件によって優占種が変化する(Harada et al., 1994; Omil et al., 1997 and 1998; Yamaguchi et al., 1999)。この場合、硫酸還元細菌とメタン生成古細 菌の競合関係は温度に影響され、低温環境下では硫 酸還元細菌が優占化したのに対して、高温環境下で はメタン生成古細菌が優占化したことを示すもの である。

Fig. 2 Time course of temperature, total CODcr, total CODcr removal efficiency, biogas production, totalmethane production, and methane production.

Fig. 3 Mass balance based on influent COD at each temperature within EGSB reactor.(a), before installing settled tank; (b), after installing settled tank.

3. 第二課題対策

溶存メタン回収 DHS による嫌気性処理水の溶存 メタンガス化回収連続実験を行った。また、DHS 内での溶存メタン回収の数学的モデルを構築し、ガ ス化回収の可能性について検討した。

3-1. DHS による溶存メタン回収原理

密閉型DHSによる溶存メタンの回収原理をFig.5 に示した。溶存メタンを含む流入水は、スポンジ内 部を移流あるいは表面を流下しながら気相と接触 する。また、DHSの下部からは空気を穏やかに供給 する。すると、液相中の溶存メタンは気相と液相間 の物質移動作用(気液平衡)により気相部に放散する。 これにより、液相中の溶存メタン濃度はDHS内を 流下するに従って減少するため、DHS処理水に溶存 メタンは含まれていない。一方、気相中のメタンガ ス濃度はDHS内を上昇するに従って高濃度になる ため、DHS上部よりメタンを高濃度に含んだガスを 回収することができる。

Fig. 5 Dissolved methane recovery principle by closed DHS.

3-2. 溶存メタン回収シミュレーションモデル

溶存メタン回収 DHS 内での物質移動現象をモデ ル化すると Fig. 6 のようになる。また、DHS 内で の物質移動現象を数学的モデルで表現すると、[1]-[4]式で表現することが出来る。

Fig. 6 Schematic diagram of DHS modeling.

$$F_{i} = K_{L}a(C_{L,i} - C'_{G,i})$$
[1]

where

 F_i : diffusion flux at i (mmol/day)

K_La : overall mass - transfer coefficient (L/day)

C_{L,i} : concentration of gas dissolved in liquid phase at i (mmol/L - liquid)

 $C'_{G,i}$: concentration of gas in gas phase at i (mmol/L - liquid)

$$Q_{G,i}^{t+1} = Q_{G,i+1}^{t+1} + \sum_{j=CH_4, N_2, CO_2, O_2} F_i^t$$
[2]

where

 Q_G : gas flow rate (L - gas/day)

$$F_i$$
 : diffusion flux at i (mmol/day)

$$V_L \frac{dC_{L,i}}{dt} = Q_L C_{L,i-1} - Q_L C_{L,i} - F_i$$
 [3]

where

 V_L : liquid phase volume at i (L)

 Q_L : liquid flow rate (L/day)

- $C_{L,i-1}$: concentration of gas dissolved in liquid phase at i 1 (mmol/L liquid)
- C_{L,i}: concentration of gas dissolved in liquid phase at i (mmol/L liquid)

 F_i : diffusion flux at i (mmol/day)

$$V_{G} \frac{dC_{G,i}}{dt} = Q_{G,i+1} C_{G,i+1} - Q_{G,i} C_{G,i} + F_{i}$$
[4]

where

 V_G : gas phase volume at i (L)

 Q_G : gas flow volume (L/day)

 $C_{G,i-1}$: concentration of gas in gas phase at i - 1 (mmol/L - gas)

 $C_{G,i}$: concentration of gas in gas phase at i (mmol/L - gas)

 F_i : diffusion flux at i (mmol/day)

3-3. 実験結果および考察

3-3-1. 連続回収性能

溶存メタン回収 DHS による嫌気性処理水の溶 存メタン連続回収実験結果をFig.7に示した。運転 期間中は、DHS への空気供給量を定期的に変更した。 運転開始後まもなくは下水水温が低かったため、溶 存メタン回収 DHS の前段に設置した EGSB リアク ターにおけるメタン生成量は低かった。その結果、 DHS への流入水である嫌気性処理水の溶存メタン が低濃度であったため、回収メタンガスの濃度も低 かった一方、溶存メタンの回収率は90%を超えた。 その後、空気供給量を 30-40 L/day に変更して運転 したところ、回収ガス中のメタン濃度が最大で37% に達し、十分に自然することを確認した。しかし、 空気供給量が少ないと、処理水中の溶存メタン残存 量が増加してしまう傾向が見られた。そこで、空気 供給量を52 L/day に増加させたところ、溶存メタン 回収率が90%以上を維持した。

Fig. 7 Time course of dissolved methane recovery efficiency and recovery methane gas concentration by DHS.

3-3-2. 溶存メタン回収シミュレーション

嫌気性処理法で都市下水を処理した際に処理水 に含まれる溶存メタン濃度(1.153 mmol/L)を想定し、 DHS 容量を 80 L、スポンジ充填率を 50% とした場 合の溶存メタン回収シミュレーションを行った。

Fig. 8 に、HRT を 3.8 h とし、DHS の高さと空気 供給量の条件を変えた場合の回収メタンガス濃度 と溶存メタン回収率のシミュレーション結果を示 した。空気供給量により溶存メタン回収率に違いが 生じるが、DHS が高くなるほど溶存メタン回収率が 高くなる結果が得られた。一方で、DHS 高さが4m 付近まではグラフの傾きが大きくなる傾向が見ら れたが、DHS 高さが5 m 以上になるとグラフの傾 きが緩やかになる傾向が見られた。この結果から、 溶存メタンを効率的に回収するためのDHS 高さは、 5 m 程度であると考えられる。

次に、回収ガスメタン濃度が 30%となるような空 気供給量と HRT の関係をシミュレーションした。 DHS 高さは4 m と8 m を想定し、シミュレーショ ン結果を Fig. 9 に示した。どの DHS 高さにおいて も HRT が長くなるに従って空気供給量が少なくな る傾向が得られた。一方で、DHS 高さによって溶存 メタン回収率に違いが見られた。DHS 高さが4 m の 場合、回収ガスメタン濃度を 30%とし、その際の溶 存メタン回収率を 90%にするためには、HRT が 10 h 以上必要となる。DHS 高さが8 m の場合は、HRT を 5 h 以上にすれば回収ガスメタン濃度を 30%、溶 存メタン回収率 90%を達成することが可能である。 また、DHS 高さが 12 m の場合は、HRT4 h 以上を確 保すれば、回収ガスメタン濃度を 30%、溶存メタン 回収率 90%を達成することが可能である。

Fig. 8 Results of simulation. (a), recovery methane gas conc.; (b), dissolved methane conc. in DHS effluent.

Fig. 9 Results of simulation in respective DHS heights. (a), Air supply for DHS and dissolved methane recovery efficiency at DHS height=4 m ; (b), Air supply for DHS and dissolved methane recovery efficiency at DHS height=8 m.

4. 結論

第一課題の対策として、EGSB リアクターによる 連続排水処理実験を行った結果、スカムなどの蓄積 トラブルが生じたために EGSB による実下水の単 独処理は困難であった。EGSB の後段処理として設 置した 2 段式 DHS リアクターは、従来のものと較 べて処理性能が低かった。以上の結果より、都市下 水処理に本研究で用いた排水処理プロセスを適用 することは困難であると考えた。

第二課題の対策として、DHS による溶存メタンの ガス化回収連続実験とシミュレーションを行った 結果、嫌気性処理水の溶存メタンは簡便な方法でガ ス化回収可能であることがわかった。また、運転条 件を制御すれば、高濃度メタンガスが回収可能であ ることがシミュレーションより明らかとなった。以 上の結果より、DHS による溶存メタンのガス化回収 技術は、都市下水の嫌気性処理法における対策法と して十分提案しうるものであると考えた。

一方で、溶存メタン回収 DHS の処理水に残存し てしまった溶存メタンの対策法を検討する必要が ある。また、DHS 内において微生物的にメタンが生 成あるいは酸化されている可能性があるため、DHS 保持汚泥内に関して分子生物学的な解析を実施す る必要がある。

参考文献

Rebac, S., J. B. Van Lier, M. G. J. Janssen, F. Dekkers, K. T. M. Swinkels, and G. Lettinga. (1997). High-rate anaerobic treatment of malting waste water in a pilot-scale EGSB system under psychrophilic conditions. *Journal of Chemical Technology and Biotechnology* 68:135-146.

Elmitwalli, T. A., V. Sklyar, G. Zeeman, and G.

Lettinga. (2002). Low temperature pre-treatment of domestic sewage in an anaerobic hybrid or an anaerobic filter reactor. *Bioresour Technol* 82:233-9.

Mahmoud, N., G. Zeeman, H. Gijzen, and G.

Lettinga. (2004). Anaerobic sewage treatment in a one-stage UASB reactor and a combined UASB-Digester system. *Water Res* 38:2347-57.

Zeeman, G., W. T. Sanders, K. Y. Wang, and G. Lettinga. (1997). Anaerobic treatment of complex wastewater and waqste activated sludge - application of an upflow anaerobic solid removal(UASR) reactor for the removal and pre-hydrolysis of suspended COD. *Wat. Sci. Tech.* **35**:121-128.

Agrawal, L. K., Y. Ohashi, E. Mochida, H. Okui, Y. Ueki, H. Harada, and A. Ohashi. (1997). Treatment of raw sewage in a temperature climate using a UASB reactor and the hanging sponge cubes process. *Wat. Sci. Tech* **36**:433-440.

Harada, H., K. Momonoi, S. Yamazaki, and S. Takizawa. (1994). Application of anaerobic-UF membrane reactor for treatment of a wastewater containing high strength particulate organics. *Wat. Sci. Tech* **30**:307-319.

Machdar, I., H. Harada, A. Ohashi, Y. Sekiguchi, H. Okui, and K. Ueki. (1997). A novel and cost-effective sewage treatment system consisting of UASB pre-treatment and aerobic post-treatment units for developing countries. *Wat. Sci. Tech* **36**:189-197.

Omil, F., C. D. Bakker, L. W. Hulshoff Pol, and G. Lettinga. (1997). Effect of pH and low temperature shocks on the competition between sulphate reducing bacteria and methane producing bacteria in UASB reactors. *Environmental Technology* **18**:255-264.

Omil, F., P. Lens, A. Visser, L. W. Hulshoff Pol, and G. Lettinga. (1998). Long-term competition between sulfate reducing and methanogenic bacteria in UASB reactors treating volatile fatty acids. *Biotechnol Bioeng* 57:676-85.

Yamaguchi, T., H. Harada, T. Hisano, S. Yamazaki, and I. C. Tseng. (1999). Process behavior of UASB reactor treating a wastewater containing high strength sulfate. *Wat. Res.* 33:3182-3190.