鋼I桁終局曲げ強度の各種簡易評価法の比較考察

1. 研究の背景及び目的

近年、橋梁建設事業にあたり、建設コ ストの低減が強く望まれており、各機関 で積極的な対応が行われている。

さて、鋼工桁鋼単独の終局曲げ強度は、 道示では降伏モーメントが最大と定義さ れている。桁高さと材質を選べば、水平 補剛材の数を選定することでウェブ厚が 決まる。水平補剛材を設けるか否かは、 重量と加工工数のバランスを考えて決定 される。この手法を厳守すれば、荷重を 増加させた場合、ウェブの座屈が先行す るものの、I桁の最大強度が降伏モーメ ントになると言われている。道示は、以 上のようにI桁の降伏モーメントを前提 としたウェブの補剛システムを規定して いるが、設計自由度は少ない手法といえ る。それに対して、ウェブの板厚や補剛 システムを設計者が任意に設定し、終局 強度が評価できれば、またその終局強度 を用いて、安全性能の照査を行うことが できれば、設計自由度を広げることが可 能となり、当然、経済設計に繋がること が期待できる。

そこで本研究では、すでに提案されて いる3手法の鋼I桁の曲げ強度評価法を 対象に、実際に使用例のあるI桁断面を 照査し、その精度比較を行った上で、今 後どの手法を採用すべきかの検討を行う。

2. 曲げ強度の評価方法

1). 設計法

本研究では、曲げ強度の照査において、次の設計法を用いる。

$$\sum M^* < M_{ult}^*$$

建設構造研究室	林裕也
指導教官	長井正嗣
	岩崎英治

- ここで、M* :係数倍した曲げ作用 M_{ut}*:曲げ終局強度
- 2). 終局曲げ強度の評価方法

終局曲げ強度の評価には、三上の手法、 西村の手法、PART-Aが挙げられる。 以下では、この3手法について紹介し ていく。

a) 三上の手法

・強度評価式

圧縮フランジの強度がウェブ強度より低い場合、I桁の曲げ強度(M_{ult})は 圧縮フランジの強度に支配される(2.1)。 一方、逆の場合、図1に示すように、 フランジ及びウェブの強度の和によってI桁の曲げ強度を評価する(2.2)。

・ $\sigma_{ult,f} \leq \sigma_{ult,w}$ (圧縮フランジ強度 \leq ウェプ強度) $\frac{M_{ult}}{M_y} = \frac{\sigma_{ult,f}}{\sigma_{yf}}$ (2.1)

•
$$\sigma_{\rm ult,f} > \sigma_{\rm ult,w}$$

$$\frac{M_{ult}}{M_{y}} = \frac{\sigma_{ult,w}}{\sigma_{yf}} \left\{ 1 + \frac{(1 - \psi)(\frac{\sigma_{ult,f}}{\sigma_{ult,w}}) - 1}{1 + \psi^{2}(\frac{A_{ft}}{A_{fc}}) + (1 + \psi + \psi^{2})(\frac{A_{w}}{3A_{fc}})} \right\}$$
(2.2)

ここで、 w は断面係数である。

b) 西村の手法

基本的には三上の手法と類似してい るが、以下の点で三上の方法と異なる。

- _{ultf}の評価は圧縮フランジのねじ
 れ座屈のみ考慮
- ・+(引張),-(圧縮)の面積が等 しくなるよう(軸力=0) fを決 定し、曲げモーメント(Mn)を求め る。そのため、鋼板内でのひずみ の直線性が無視される。(図-2)

図-2 西村の手法

c) PART-A

有効断面(斜線部)で断面諸量を計算 して、

 $M_n = \sigma_v \cdot w$

の関係より求める。(図-3)

図-3 PART-A

3. 計算断面

本研究では、日本で使用されている合 成少数桁断面(図-4)と、アメリカで使 用されている合成桁断面(図-5)、また、 実験用断面(図-6)について照査を行っ た。

合成少数桁断面(日本) 叉-4

図-5 合成桁断面(アメリカ)

4. 計算結果

1) 合成桁断面の計算結果

表-1、図-7に我が国の合成少数主桁 断面とアメリカで設計された合成桁の 断面を計算対象とした結果を示す。

西村式では、Case4,6,8 においてウェ ブ圧縮領域が狭いため、下フランジ位 置の応力が特定できない問題が生じて いる。また、西村式、PART-A は三上 式より強度を高く評価する傾向にある が、この原因として、横ねじれ座屈強 度の高い評価式を両者が使用している 点が考えられる。

三上式では、ここで採用したモデル において、西村式に対し最大7%の差 異が生じるが、Case4,6,8を除いて、そ の他のケースでは比較的良い一致を示 している。PART-Aでは、平均的には 5%程度、強度を高く評価している。

これらより、本検討の範囲では、三 上式が安全側の立場から使用できると 考えられる。

2) 実験用 I 桁断面の計算結果

表-2、図-8 に実験用 I 桁断面の計算 結果を示す。

結果から、合成用断面と同様に、3 手法の差異はあまり大きくないと言え る。Case1~5とCase7は、実験の終局 曲げ強度が降伏モーメントより大きく なっているが、評価式の最大強度は降 伏強度のため、これらのケースでは、 降伏モーメントが得られるとよりよい 結果が期待できる。

しかし、Case4,5 と Case7 では評価で きていない。特に Case7 は 15%程度、 強度を安全側に低く評価している。こ の原因として、各評価式ではフランジ の板座屈強度が降伏点以下となるが、 実験では、フランジ座屈が降伏点まで 生じなかったためである。なぜ局部座 屈が生じなかったのか、という原因は 本研究の範囲では特定できなかった。

5. 結論

本研究で得られた結果をまとめると 以下のようになる。

・3 手法間の考え方を明らかにした。 ・3 手法間の差異は極端には大きく なく、三上式が安全側で利用できる と考えられる。

・実験結果との比較から、簡易評価 手法が安全側の評価となる傾向が得 られた。

6. 今後の展開

現在、別機関で実験結果40ケース との比較が行われており、これらの成 果も参照しつつ、以上の要因検討を含 め、採用する手法を決定したいと考え ている。

			(kN · m)
	三上	西村	PART-A
case 1	38755	41581	41750
case 2	20736	20616	21768
case 3	21258	21558	22082
case 4	32901		35184
case 5	21005	20533	20778
case 6	58091		59042
case 7	10389	10946	10972
case 8	3208		3374
case 9	2848	2877	2878

図-7 各手法/三上式(合成桁断面)

表-8 実験用 I 桁の計算結果

				(kN · m)	
/	三上	西村	PART-A	実験値	降伏強度(My)
case1	233.4	233.4	233.4	294.3	232.2
case2	416.9	416.9	416.9	451.6	415.3
case3	861.0	868.7	839.5	879.2	880.6
case4	150.3	144.1	153.0	184.1	163.3
case5	484.5	492.8	497.8	530.9	533.4
case6	688.3	675.4	668.7	695.9	790.5
case7	164.1	158.1	162.9	211.9	192.6
case8	511.2	488.7	536.4	545.4	642.1
case9	736.9	720.4	760.3	742.4	946.4