差分法による長大アンカー体の引抜抵抗力の推定

防災設計工学研究室 白井 若菜

指導教官 海野隆哉

1. はじめに

表層部分の不安定化の原因となる自重を相対 的に安定した地盤に支持させることを目的に開 発されたグラウンドアンカー工法は、施工性能 の向上により、地下工事における工期短縮、工 事費の節減、周辺地盤・構造物への影響の低減 などの利点から、様々な工事に利用されている. しかし、グラウンドアンカーの支持力機構につ いてはまだ十分には解明されていない.

2. 目的

本研究では、本田¹⁾、飯島²⁾ らによる模擬ア ンカーの室内引き抜き試験結果(図1)²⁾から、 伝達関数による解析法を用いて試験結果と解析 結果の整合性の評価、長大アンカーの力学的挙 動および極限引抜き荷重の推定を行うことを研 究目的とする.

3. 模擬アンカーの室内引抜き試験

試験では,**表1**に示す通り模擬地盤の種類 を砂礫,礫まじり砂,細砂の3種類とし,上載 圧力条件を変化させて引抜き試験を行った.

case	抽般冬伊	上載圧力σv	想定深度
	地盈禾件	(kN/m^2)	(m)
1	砂礫	0	0
2	砂礫	180	15
3	砂礫	360	30
4	礫まじり砂	0	0
5	礫まじり砂	180	15
6	礫まじり砂	360	30
7	細 砂	0	0
8	細 砂	360	30

表1 試験条件

4. 解析

本研究では、伝達関数による解析法を用いて 解析を行った。この方法ではアンカー体を弾性 体と仮定し、周面摩擦力度を、アンカー体周面 と地盤との間の相対変位の関数として解析を行 う、中心差分法の式を式(1)に示す.

図2 地盤への荷重伝達

(1) 周面摩擦力度·変位関係

解析では試験により求められた周面摩擦力度 -変位関係を用いた。周面摩擦力度は引抜き荷重 をアンカー体周面積で除することで求め、変位は アンカー体変位とテンドンのひずみから求めた. 試 験ではアンカー体引抜き量 200mm程度までしか 行なわれていないため、それ以降は最も相関性を 有している近似式により決定している。図3に、 case3の模擬地盤における周面摩擦力度-変位関 係を示す.

- (2) 解析手順
- 下端に変位を与え、No.1 要素の中点変位と する.
- ② 変位に対応する周面摩擦力度を求める.
- 周面摩擦力度,周長,要素長から軸力の増 分,要素上端変位を求める.
- ④ 要素の下半分の弾性変形量を求める.
- ⑤ ①, ④から新たな中点変位を決定する.
- ⑥ ①と⑤の変位の誤差が 0.01%未満になるまでくり返す.
- ⑦収れんしたら No.2 要素に移り, この計算をア ンカー体頭部までくり返す.

(3)解析モデル

試験との整合性を確認するために行った解析で は試験と同様のアンカー体諸元を用いているが, 長大アンカーの解析ではテンドンの降伏荷重が極 限引抜き荷重よりも大きくなる必要があるので, 試 験とは異なるテンドンを用いた. case1,4~8 では SWPR7B-19を, case2,3 では SWPR19を用いて いる. 解析モデルの諸元を**表 2**に示す.

表2 解析モデルの諸元

	アンカー体		グラ				
	直径 (mm)		弾性係数	/m ²)			
	150		2.4				
テンドン							
	記号 公		称断面積 (mm²)	本数	弹性係数 (kN/m²)	女)	
SV	WPR7B-19	1410		1	1.869×108	08	
	SWPR19		532.4	12	1.002 ^ 1	00	

5. 解析結果および考察

(1) 試験結果の解析

アンカー体長 1mのものについて、上載荷重 360kN/m²を載荷した場合の解析結果を, 3 種類 の模擬地盤それぞれの代表的な結果として**図4**に 示した.

すべての模擬地盤について,試験結果を解析 によって再現できていることが確認できた.

砂礫を模擬地盤とした場合では、試験結果と同様の挙動を示しているが、残留部で誤差が見られる。これは解析において、変位が大きいほど先端 変位を変化させるピッチも大きくなっているためである.

礫まじり砂,細砂を用いた場合ではどちらも引抜き 荷重の減少が直線的であったため、差は小さくなった.

模擬アンカーの解析結果

(2) 長大アンカーの解析

2m~30mのアンカーについても同様に解析を 行った. 図4~6に、上載荷重 360kN/m²を載荷 したの模擬地盤について長大アンカーの解析を行 った結果を示す.

砂礫を用いた場合では,引抜き荷重が最大 9000kN 近くと、非常に大きくなった。また、アンカ 一体長 30mでは, 極限引抜き荷重に達した後, ア ンカー体頭部変位 150mm付近でほとんど変位増 加が無いまま引抜き荷重が急激に低下した.これ は、アンカー体頭部の変位がほぼ変化しないまま アンカー体頭部と先端の変位差が小さくなり,周面 摩擦力度の小さな変位に集中したことが原因であ る. 変位 600mm付近からは、引抜き荷重が非常 に小さい状態で一定となった。

礫まじり砂では、砂礫に比較すると小さな引抜き 荷重だが,それでも最大 1500kN 以上の値になっ た. 極限引抜き荷重直後で急激な低下が見られる が,その後大きく低下することなく安定した.

細砂では,他の地盤を用いた場合に比較して小 さな引抜き荷重となった.また,極限引抜き荷重後 の減少が直線的となった.この傾向は試験結果か らも得られており、そのことが影響していると考えら れる.

図5長大アンカーの解析結果(case 6)

図6 長大アンカーの解析結果 (case8)

一般に、緩い砂地盤を除き、砂層、砂礫層での 極限引抜き荷重はアンカー体長 10mを超えるとほ とんど増加しないと言われている³⁾が、本研究では ほぼ比例して増加していた(図6).

これは、模擬地盤が十分に密になっていなかったこと、試験で得られた周面摩擦力度が最大値に 達した後十分に低下していないことなどが考えられる.

6. まとめ

・地盤の周面摩擦力度-変位関係について十分にデータが得られている場合,アンカー体の諸元を与える ことで簡易的に引抜き荷重-アンカー体変位関係を推定できる.

・本研究の解析で用いた実験結果のみから,現実の長大アンカーの極限引抜き荷重を推定することは難しい.

7. 参考文献

- 1) 本田昌之,長大アンカー体の周面摩擦抵抗に関する研究,長岡技術科学大学修士論文,2005
- 2) 飯島正泰,深部地盤におけるアンカー体の周面摩擦抵抗に関する研究,長岡技術科学大学修士論 文,2006
- 3) 地盤工学会基準 グラウンドアンカー設計・施工基準,同解説(JGS4101-2000),社団法人地 盤工学会,2003