豪雨や地震時における不飽和斜面の強度評価

地盤工学研究室 辻岡孝彦 指導教員 豊田浩史

1.はじめに

2003年には九州,2004年には新潟・福島,福井な どで豪雨災害により,多大な被害が発生した.また, 土砂災害が多発した新潟県中越地震では,集水地形 での崩壊が多く,地震発生前の降雨によっても,多 くの斜面崩壊が誘発されたと考えられている.これ までの研究では,地下水位に着目した検討は行われ てきているものの,その結果を斜面等の強度評価に 結びつけているものはほとんどない.特に不飽和土 は,飽和度により見かけの粘着力が変わるため,地 盤の含水状態を考慮した上で斜面などの強度評価を 行うべきである.

本研究では,実際に崩壊した堤防や斜面の土を 用いて不飽和状態を考慮した試験を行い,その試 験結果を用いて不飽和斜面の強度評価について 検討を行う.

2. 豪雨時における不飽和斜面の強度評価手法

豪雨時における不飽和斜面の強度評価手法は,3 つのステップに分けられる.はじめに試験により各 不飽和状態における土質定数を求める.次に土質定 数と降雨等の地盤状況を考慮した上で浸透解析を行 い,安定解析を行う時の水頭を求める.最後に土質

定数と浸透解析結果を結びつけ,安定解析を行う.

2.1 試料

試料は,五十嵐川破堤箇所(三条市諏訪)より採 取した砂質土を用いた.この砂質土の物理的性質は, $\rho_s=2.607$ g/cm3, *Clay=20.5%*, *Silt=26%*, *Sand=46.5%* である.

2.2 各土質定数を求めるための不飽和試験

強度試験として,五十嵐川堤体の不飽和試料の一 面せん断定圧試験を行った.供試体作製時の間隙比 算定のため,破堤箇所より不撹乱試料を採取したと ころ, e=1.01~1.34 であり,非常にゆるいことがわ かる.供試体作製方法は,含水比を調節した堤体土 をe=1.00 となるように静的に締固めた.また,三軸 試験装置を用いて同様の供試体作製方法で水分特性 曲線を求めた.

図-1 に 一面せん断の試験結果を示す 図-1 より, 含水比の増加にともない,粘着力が小さくなってい る.含水比が30%と20%での粘着力には大きな差が あるが,10%と20%での粘着力にはほとんど差がな いという特徴がある.不飽和土に水が浸透し飽和度 が高くなると,強度低下することが確認できる.

解析には市販の解析ソフトを用いた.図-2 に三軸 試験による水分特性曲線,解析で用いた水分特性曲 線と不飽和透水係数を示す.堤外地では実測データ に基づき川の水位を上昇させ,堤内地では内水位の 変化を考慮しなければならないが,本解析では水頭 一定として解析を行った.土質は解析断面内で均一 とし,砂を用い,基礎地盤に関しては,複雑な地層 構造が考えられるが,堤体土と同じ土質とした.ま た,天端の舗装道路を考慮し,不透水層を設けた.

図-3 に 7 月 13 日の五十嵐川破堤付近の河川水位 変化と,五十嵐川上流に位置する下田村の雨量を示 す.横軸は 7 月 13 日の 24 時間表記であり,4 時,5 時の雨量データは欠測になっている.図-3 に示して あるが,二度目の水位ピーク時に破堤したといわれ ている.図-3 より,上流の雨量変化より4 時間程度 遅れて,河川の水位が変化していることがわかる. 水位変化は実測データより破堤時刻(13 時間後)以降 は最大水位を維持させて,降雨強度は 50mm/h を一 定として 100 時間後まで解析を行った.ここで示す 結果は,浸透破壊を考えた時,透水性のよい材料の ほうが短時間で破壊に至りやすいため,透水性のよ

図-4 五十嵐川堤防浸透解析(13時間後)

い砂の土質定数を用いた結果である.破堤した時間 と思われる 13 時間後の解析結果を図-4 に示す.破 堤時刻に、雨量自体は地表面しか水が浸透してなく, 湿潤面は裏のり尻までまったく到達していないこと がわかった 湿潤面は 30 時間後にようやく裏のり尻 に達し,50 時間後に裏のり尻に動水勾配が発生して 危険な状態になった.

2.4 安定解析

浸透解析の結果と土質試験結果を用いて安定解析 を行った.安定解析には,スライス法による円弧す べりを用い,解法はスペンサー法を用いた.また, 図-1 より内部摩擦角は含水状態によらず Ø=36°一 定である.図-5に,一面せん断試験から求められた 体積含水率-粘着力関係と三軸試験による水分特性 曲線を示す.図-5を用い,解析断面の粘着力を次の ようにして求めた.

(1)浸透流解析より水頭(サクション)のコンターを得る.(2)サクションのコンターを図-5より体積含水率のコンターにする.(3)体積含水率のコンターを図-5より粘着力のコンターにする.13時間後の浸透流解 析結果を用いて行った安定解析結果を図-6に示す.

破堤時刻である 13 時間後の安全率は1を大きく上回っており,安定であるといえる.

2.5 まとめ

現地調査の結果,表のり面の侵食により破堤が起 こった可能性が低いことがわかった.また,破堤を 引き起こすようなパイピングの目撃証言もなく,堤 体や基礎地盤も流されてしまっているため不明確で ある.一様均質地盤を仮定した解析の結果,浸透に よる破壊は起こらないことが明らかになり,越流が 破堤の原因である可能性が考えられる.図-5により, サクションのコンターを粘着力のコンターに変換す ることができ,地盤の不飽和状態を考慮して堤体の 強度評価ができたといえる.

3. 地震時における不飽和斜面の強度評価手法

地震時には不飽和砂質土に動的な荷重がかか ることから,三軸試験装置を用いて繰返し載荷 の影響を調べる.なお,飽和砂質土における繰 返し三軸試験から液状化強度曲線も求めた.

3.1 試料

試料は旧山古志村楢木斜面崩壊箇所より採取 した砂を用いた.旧山古志村楢木は表層破壊に 分類される.崩壊地の基盤岩の上に現れた土は 低固結の砂質土であった.粒径加積曲線を図-7 に,水分特性曲線を図-8に示す.最大,最小間 隙比は 1.207 と 0.676 であった.

3.2 静的三軸試験

強度試験として三軸試験を行った.供試体作 製時の間隙比算定のため不撹乱試料を採取した ところ,間隙比 e=0.848 であった.採取箇所の 砂は中密で,破壊は中密層で引き起こされたと 考えられるため,再構成試料を湿潤締固め法で e=0.85 に作製し,不撹乱試料とせん断特性を比 較した.含水比 5%の土を直径 5cm のモールド に入れ,注意深く突固めた.

図-9 に再構成試料と不撹乱試料の飽和砂の 破壊線を示す.図-10 に不飽和砂(サクション 10kPa で不飽和化)と飽和砂の破壊線を示す.図 -9より,破壊線はほぼ等しいことがわかる.こ のことから原位置地盤を再現できたといえる. 図-10より,不飽和砂と飽和砂の内部摩擦角は ほぼ等しいことがわかる.また,粘着力が飽和 砂に比べ大きいことがわかる.

3.3 繰返し三軸試験

地震時には動的な荷重がかかるので,繰返し 三軸試験を行った.試料作製方法は静的三軸試 験と同じ湿潤締固め法を用いた.飽和砂質土の 繰返し三軸試験により液状化強度評価を行った. また,不飽和砂質土では,応力振幅を制御し, 載荷回数150回のせん断履歴を与えた後に,非 排水条件による三軸圧縮試験を行い,繰返し載 荷による強度変化について調べた.

図-11 に飽和砂質土の繰返し三軸試験の結果 を示す.また,図-12に液状化強度曲線を示す. 図-11 より繰返し振幅の増加にともない平均有 効主応力が減少していることがわかる.また, 図-12 より DA=1,2,5%の曲線の間隔が狭いこ とがわかる.繰返し回数が小さい範囲での液状 化強度曲線の立ち上がりも顕著でないため,一 旦液状化するとひずみが急激に進行する試料で あることがわかる.

(a)

0.05

0.04

0.03

0.02

0.01

0

0

Deviator stress, q (kPa)

e

volume rate

図-13 に不飽和砂質土とそ の繰返し載荷後の破壊線を示 した.図-13 より繰返し載荷 後も不飽和砂質土の破壊線上 の強度とほぼ等しくなった. 繰返し載荷後,サクション低 下により,強度も低下すると 考えていたが,強度低下は見 られなかった.この原因とし て,繰返し載荷の影響で,間

Deviator stress, q (kPa)

隙比が密になったことが考えられる.図-14 に 繰返し振幅と(a)間隙比,(b)サクション比の関係 を示す.この結果から,振幅の増加にともない サクションは小さくなるが,間隙比は密になる ことがわかる.

3.4 安定解析

静的三軸試験,動的三軸試験より得られた結 果を用いて,安定解析を行った.安定解析には, 円弧すべりを用い,解法はヤンブ法を用いた.

不飽和三軸試験の結果より,サクションの作 用した不飽和砂質土は,繰返し載荷によりほと んど強度変化を起こさなかった.これらのこと を考慮し,斜面安定解析では不飽和砂質土の排 水三軸圧縮試験から得られた結果より,中密な 不飽和土を想定し,内部摩擦角 39.4°,粘着力 5.5kPa で,密な不飽和土を想定し,内部摩擦角 48.2° 粘着力 17.2kPa を用いて斜面安定解析を 行った.また,水平震度を0,0.1,0.2,0.3,0.4 と変化させてそれぞれの安全率を確認した.

飽和砂質土では中密な飽和土を用い 地震前, 地震後,地震中の3パターンでおこなった.地 震中は水平震度も考慮して行い,地震中は最大 加速度時の安全率を用いた.

地震前の条件は静的三軸試験で得られた内部 摩擦角を用いた.地震後は,図-15の内部摩擦 角と繰返し回数の関係を用いて,内部摩擦角を 決める.地震中は最大加速度時の内部摩擦角を 図-15から決める.しかし,実験で得られた結

果は規則波であるため,実際の 新潟県中越地震と等価な規則波 に変換するために図-16 を用い た.図-16 から新潟県中越地震 は M6.8 であるので,等価な規 則波に変換すると繰返し回数は 8 回とわかる.そこで,地震後 は 8 回時の内部摩擦角 =28.5。を用いた.地震中は最大加速度時を全回 数の4分の1と仮定し,2回時の内部摩擦角 =32.8。を用い,また地震力も考慮するため,水 平震度0.1を用いた.解析条件と解析結果を表 -1に示す.どのケースも,斜面上部の表層で崩 壊した.

図-17 に不飽和土の安定解析結果を,図-18 に飽和土の安定解析結果を示す.図-17 より,

		内部摩擦角 (°)	粘着力 (kPa)	土の単位体積 重量 (kN/m3)	水平震度	安全率
不飽和土	撥	48.2	17.2	18	0.0	1.617
					0.1	1.358
					0.2	1.146
					0.3	0.98
					0.4	0.837
	密	39.9	5.5	17	0.0	1.087
					0.1	0.912
					0.2	0.766
					0.3	0.647
					0.4	0.546
飽和	地震前	39.9	0.7	19	-	0.908
	地震中	28.5			0.1	0.493
	地震後	32.8			-	0.464

中密な試料に比べ,密な試料は安全率が高く, 中密な試料は水平震度0.1で安全率が1を下回 り,密な試料は水平震度0.3まで安全率が1を 下回ることはなかった.図-18より,地震中が もっとも安全率が低く,不飽和土に比べて極端 に低下していることがわかる.

3.5 まとめ

本研究で用いた旧山古志村楢木崩壊箇所の試 料は,一旦液状化するとひずみが急激に進行す る試料であることがわかった.振幅の影響で強 度低下を起こすことはなかった.これは,振幅 の増加にともないサクションは低下するものの, 間隙比は小さくなるからである.また,飽和砂 質土の安定解析結果より,地震中の安全率が最 も小さくなった.

4. 結論

本研究では,実際に崩壊した堤防や斜面の土 を用いて不飽和状態を考慮した試験を行い,そ の試験結果を用いて不飽和斜面の強度評価につ いて検討を行った.

本研究で得られた知見を以下に示す.

- (1) 豪雨時における浸透解析によって得られた サクションのコンターに,水分特性曲線と 一面せん断試験で求めた体積含水率 - 粘着 力関係を用い,粘着力のコンターを得るこ とができた.
- (2) サクションに応じた粘着力のコンターを得ることにより,斜面安定解析を行う際,不 飽和状態を考慮して安全率を求めることができた.
- (3) 地震による斜面崩壊箇所から採取した試料 は,飽和土の液状化強度曲線のDA=1,2, 5%の曲線の間隔が狭いので,一旦液状化す るとひずみが急激に進行する試料である.

- (4) サクションの作用した不飽和砂質土は,繰
 返し載荷によりほとんど強度変化を起こさなかった.
- (5) 不飽和土では,地震中に強度定数を変化さ せる必要はなく,地震力のみ考慮すればよい.
- (6) 飽和土においては,地震中の強度定数の変化と地震力の両方を考慮する必要があり,安全率が極端に低下する.

