長岡技術科学大学大学院 佐藤 啓明

指導教官 〇細山田 得三

1. はじめに

一般的に河川における河口砂州は流下能力の低 下を招き,出水時に危険である.一方で通常時は塩 水遡上を低減する側面もあるが,それにもまして出 水時の危険に対する懸念が大きい.大流量による出 水時には,河口砂州が水によって流され河口が拡大 する.これをフラッシュ現象と呼ぶ.例として図・1 に平成 16 年新潟・福島豪雨のときの阿賀野川にお けるフラッシュ現象を出水の前後の航空写真により 示す.このフラッシュ現象により河口砂州の流下能 力は拡大する.治水安全上,出水時にはフラッシュ 現象により,河口幅の拡大,流下能力の拡大が必要 であるといえる.

本研究の対象である阿賀野川においては,過去の 出水時に大規模なフラッシュ現象が確認できたケー スとそうでないケースがあり,十分に安全な状態と は言いきれないのが現状である.

そこで本研究では河口砂州の適正な管理のキーワ ードとなるフラッシュ現象を対象として,実地形を 用いた2次元の数値計算によるシミュレーションに より,フラッシュ現象の定量的な把握,および危険 性の比較検討など行うことを目的とする.

2. 研究概要

(1) 基礎方程式

本研究では一般座標系による平面2次元の流れと 砂の移動の計算を行った.河川の流れを表現するた めに連続式,運動方程式を使用した.式(3),(4),(5) に一般座標系に変換した連続式,および運動方程式

平成16年5月撮影(出水前) 平成16年7月撮影(出水後) 図−1 阿賀野川におけるフラッシュ現象の例

を示す.また河床変動には掃流砂および浮遊砂の理 論を用いた.式(4)に浮遊砂の拡散方程式を示す.掃 流砂と浮遊砂の理論から求められた掃流砂量,基準 面濃度,砂の巻き上げ速度を式(5)に示す土砂の連続 式に代入することで地形変動を表した.

ここに、tは時間、x,yはデカルト座標系による空 間座標、 ξ , η は一般座標系による空間座標、 ξ x, η x, ξ y, η yは座標変換マトリクス、Jは座標変換ヤコビ アン、u,vはx,y方向の水深平均流速、U,Vは流速ベ クトルの反変成分、M,Nはx,y方向の流量、gは重力 加速度、hは水深、 ρ は水の密度、zsは基準面からの

水位, τ bx, τ byはx,y座標系の底面せん断応力成 分, $-u'^2$, -u'v', $-v'^2$ は x,y座標系での水深平均 レイノルズ応力, cは土砂の濃度の水深方向平均, woは砂粒子の最終沈降速度, ε sz, ε syはそれぞれ z 方向, y 方向の砂の拡散係数, Z_b は河床高, λ は砂 の空隙率, qBx,qByはx,y方向の掃流砂量, C_a は基準 点濃度 E_s は砂の何巻き上げ速度である.

$$\frac{\partial}{\partial t}\left(\frac{h}{J}\right) + \frac{\partial}{\partial \xi}\left(\frac{Uh}{J}\right) + \frac{\partial}{\partial \eta}\left(\frac{Vh}{J}\right) \qquad (1)$$

$$\frac{\partial}{\partial t}\left(\frac{M}{J}\right) + \frac{\partial}{\partial \xi}\left(\frac{UM}{J}\right) + \frac{\partial}{\partial \eta}\left(\frac{VM}{J}\right) = -gh\left(\frac{\xi_x}{J}\frac{\partial z_s}{\partial \xi} + \frac{\eta_x}{J}\frac{\partial z_s}{\partial \eta}\right) - \frac{\tau_{bx}}{\rho J} \qquad (2)$$

$$+ \frac{\xi_x}{J}\frac{\partial}{\partial \xi}\left(-\overline{u'^2}h\right) + \frac{\xi_y}{J}\frac{\partial}{\partial \xi}\left(-\overline{u'v'}h\right) + \frac{\eta_x}{J}\frac{\partial}{\partial \eta}\left(-\overline{u'v'}h\right) \\
+ \frac{\eta_x}{J}\frac{\partial}{\partial \eta}\left(-\overline{u'^2}h\right) + \frac{\eta_y}{J}\frac{\partial}{\partial \eta}\left(-\overline{u'v'}h\right) \\
= -gh\left(\frac{\xi_y}{J}\frac{\partial z_s}{\partial \xi} + \frac{\eta_y}{J}\frac{\partial z_s}{\partial \eta}\right) - \frac{\tau_{by}}{\rho J} \\
+ \frac{\xi_x}{J}\frac{\partial}{\partial \xi}\left(-\overline{u'v'}h\right) + \frac{\xi_y}{J}\frac{\partial}{\partial \xi}\left(-\overline{v'^2}h\right) \\
+ \frac{\eta_x}{J}\frac{\partial}{\partial \eta}\left(-\overline{u'v'}h\right) + \frac{\xi_y}{J}\frac{\partial}{\partial \xi}\left(-\overline{v'^2}h\right) \\$$
(3)

$$h \Biggl\{ \frac{\partial c}{\partial t} + u \Biggl(\xi_x \frac{\partial c}{\partial \xi} + \eta_x \frac{\partial c}{\partial \eta} \Biggr) + v \Biggl(\xi_y \frac{\partial c}{\partial \xi} + \eta_y \frac{\partial c}{\partial \eta} \Biggr) \Biggr\}$$

$$= -\frac{h w_0^2}{\varepsilon_{sz}} c + w_0 E_s$$

$$+ \xi_y \Biggl\{ \frac{\partial}{\partial \xi} \Biggl(\varepsilon_{sy} \xi_y \frac{\partial ch}{\partial \xi} \Biggr) + \frac{\partial}{\partial \eta} \Biggl(\varepsilon_{sy} \eta_y \frac{\partial ch}{\partial \eta} \Biggr) \Biggr\}$$

$$+ \eta_y \Biggl\{ \frac{\partial}{\partial \xi} \Biggl(\varepsilon_{sy} \xi_y \frac{\partial ch}{\partial \xi} \Biggr) + \frac{\partial}{\partial \eta} \Biggl(\varepsilon_{sy} \eta_y \frac{\partial ch}{\partial \eta} \Biggr) \Biggr\}$$

$$(1 - \lambda) \frac{\partial}{\partial t} \Biggl(\frac{z_b}{J} \Biggr)$$

$$= -\Biggl(\frac{\partial}{\partial \xi} \Biggl(\frac{q_{Bx}}{J} \Biggr) + \frac{\partial}{\partial \eta} \Biggl(\frac{q_{By}}{J} \Biggr) \Biggr) + w_0 \times (C_a - E_s)$$

$$(5)$$

(2)計算条件および境界条件

計算領域は阿賀野川河口周辺とし、図-2に河床高 コンター(平成12年2月測深)と共に示す.座標系は 平面2次元一般座標系,格子は流下方向に72格子, 横断方向に15格子とした.また境界条件として図3 に示すように上流端に平成14年の台風6号におけ る流量、下流端に水位を与えた.またマニングの粗 度係数は 0.032 を使用した.計算はフラッシュ現象 を想定しないケースと,フラッシュ現象を想定し掃 流砂と浮遊砂によって再現したケースを行った.

3. 計算結果および考察

(1) 結果の検証

本研究で行った計算について、計算がどの程度実 現象に適合するのかを検証しなければならない.本 研究の目的である,危険性の検討に必要となる重要 な要素は水位である. そこで図-4 に示す松ヶ崎水位 観測所の水位と計算値を比較することとする.計算 は下流端の潮位を図-3 で与えたものを増減させる などして数パターン行い、その中で最もよく合う基 準となる図-3の水位より+25cmのケースを示した. 全体的によく適合しているように見える. またピー ク時の水位があっていることもわかる.また図-5に 横軸に水位の観測値,縦軸に計算値をとった.これ より得られた線形近似は傾きも45°に近く, 原点付 近を通っていることからも計算値と観測値の相関が 良くあらわれており,水位に関する計算の適合性が よいといえる. そこで次節からはこの計算例をもと に議論することとする.

0.5

0.0LZ 0.0

0.5

図-5

1.0

1.5 Elevation Ex (m)

観測値と計算値の相関

2.0

2.5

(2) 流速について

図-6 はピーク流量時のフラッシュの有無による 流速の比較である.茶色の部分は陸域で,河口砂州 である.また青や水色は水域を表し,水色から青に なるほど水深が深いことを示す.左側が上流側,右 側が下流側であり,上の図はフラッシュがない場合, 下の図はフラッシュがある場合である.フラッシュ が無い場合は,流量に対して十分な河口断面をとる ことができない.そのため堰上げがおこり砂州の上 流側はフラッシュがある場合に比べ,水域部が多い. また流速に関してはフラッシュしない場合は河口の 流下断面がフラッシュする場合に比べ小さいので流 速が大きくなる.逆にフラッシュする場合はフラッ シュしない場合に比べ十分は流下断面をフラッシュ によって得られるので水位上昇も少なく,流速もフ ラッシュしない場合に比べ大きく緩和される.

図-6 フラッシュの有無による流速の比較

(3) フラッシュ現象による地形変化

図-3 にはフラッシュ現象による地形変動の時間 的変化を示す.図の側上が上流端,下側が下流端で ある.また高さは地形の標高を表し,色は元の地形 からの地形の変化量を示している.黄緑色が変化量 0 を示している.また青色は地形が削られたのを意 味し,赤色は堆積を示す.これを見ると経過時間が たつにつれて,河口部で砂州が削れて行く様子がわ かる.砂州は中央部にて削れはじめ,その削れた砂 は,砂州を出たところあたりに堆積しはじめる.砂 州部分は河口幅が狭いため流速が大きくなり地形は 削られる.また河口よりやや下流部は砂州部を出た ところであり,河口幅も広がり,水深も低くなるた め,流速が低下する.そのため砂州部は地形が削ら れ,砂州を出たところに砂が堆積する.

図-7 フラッシュによる地形変動の時間変化

(4) フラッシュ現象の水位への影響

図-8 は河床高および水位の時間的変化をフラッ シュ現象がある場合とない場合で比較した図である. 左が上流側,右が下流側となっており,点線がフラ ッシュを想定した場合,実線はフラッシュがない場 合を表している. また青線が水位, 赤線が地形, 黒 点線が堤防の高さを表している.また上の図から下 の方になるにつれて時間の変化を表している. 経過 時間がちょうど1日のときはまだ地形の変化がおこ っていないため、フラッシュする場合としない場合 に水位の違いは見られない. しかし時間がたつにつ れて、徐々に地形に変化が見られるようになる.こ れは流量の増加に伴って,砂州部での流速が大きく なるからである.地形は砂州部では大きく削られる. そして砂州部よりやや下流側に堆積する.砂州部は 河口幅が狭いため, 流速が速いから地形は削られ, それよりやや下流では河口幅が広くなり、水深も深

くなるため、流速は遅くなるため、砂がそこに堆積 することとなる.またフラッシュがある場合には砂 州が削れることにより、十分な流下断面を確保でき るが、フラッシュしない場合はそれがないため、十 分な流下断面を確保できず、堰上げが生じ、極端な 水位上昇が見られる.経過時間が1日と15時間か ら20時間くらいの時間帯では、フラッシュしない 場合は堤防高さとほぼ同じ高さまで水位が上昇して いるため、大変危険であることが分かる.この地点 は、左岸側は空港、右岸側は住宅街となっており、 大きな出水時には注意が必要である.このようにフ ラッシュが無い場合は大変危険であることがわかる. ゆえに安全性という観点からフラッシュ現象は重要 である.

(5) 土砂移動モデルの問題点

フラッシュを表現するのに掃流砂と浮遊砂の理論 を用いて計算を行った.しかしながら洪水時におい て現在の浮遊砂の計算手法などは十分とはいえない. 本研究の目的上はこの程度の計算でよいが,砂州の 変化を適正に知りたい場合はその部分を今後検討す る必要がある.またフラッシュ現象についても掃流 砂と浮遊砂の理論だけでは表現しきれるとは考えに くい.その点についても今後検討の必要がある.

4. まとめ

本研究では、地形変動の傾向について把握するこ とができた.またフラッシュがある場合と無い場合 でおよそ 2m の水位さが見られ、フラッシュが無い場 合には堤防高さとほぼ同じ高さまで水位が上昇する ことが分かった.その近辺には左岸側は空港、右岸 側は住宅街であり大変危険である.それにより、フ ラッシュ現象が水位に与える影響は大きく治水安全 上、重要であるということが明らかになった.

図-8 フラッシュの有無による河床変動と水位