# 鉄道軌道を考慮した SEA 法の適用に関する研究

建設設計工学研究室 佐藤 千春

#### 指導教官 宮木 康幸

### 1.はじめに

近年,人口の都市への集中が増加し,都市部におい ては鉄道や地下鉄網の整備による輸送力の強化が図 られてきた.鉄道橋を列車が走行する際に発生する騒 音は,大別すると"走行音"と"固体音"(構造物音) に分けることができる.前者は電車の機器音や車輪と レール間の音などを指し,後者はレールで発生した振 動が軌道を介して床版等に伝わり,その振動が原因で 生じる音を指す.鉄道橋の騒音において,特に鋼製の 場合は,固体音が卓越する.よって,本研究では固体 音に着目し,研究対象としている.

本研究は,騒音として重要な中高周波数域の計算を 得意とする,統計的エネルギー解析法(以下 SEA 法) を用いている.SEA 法では橋梁への入力データとし て,鉄道橋で測定された振動加速度を用いる必要があ る.このデータは,軌道や音源として寄与度の高い床 版・桁などが考えられる.床版や桁は,橋梁のスパン 長,構造形式など個々の橋梁で大きく異なるのに対し, 軌道はこれらによらず異なる列車においても比較的 類似した振動加速度スペクトルとなり類型化が可能 である.したがって,本研究では,軌道での振動加速 度を想定して,新橋でも,発生する騒音をある程度予 測できるようにすることを最終目標としている.

### 2.本研究の目的

昨年度の研究では橋梁で測定された,騒音・振動調 査のデータを用いて,騒音伝搬を考慮し回折効果を導 入した SEA 解析が行われた.しかし,SEA 法の計算 では,入力位置を床版とし,軌道スラブ部での振動加 速度値で計算が行われた.本来は鉄道橋の固体音伝搬 はレールを介し橋梁構造へと伝搬される.したがって, 入力位置および入力振動加速度を類型化可能なレー ルとし計算を行う必要がある.よって,本研究では実 橋での SEA 法による解析において,軌道構造を考慮 した解析を行うと伴に,固体音伝搬予測の汎用性の向 上を目的としている.

#### 3.SEA 法の概要

SEA 法は,中高周波数域の振動騒音解析において注 目されており,車・船舶・航空・宇宙などあらゆる分 野で適用検討がなされている.

SEA 法では振動,音響をエネルギーという統一量で 表す.解析対象である構造物は FEM に比べて比較的 少数な要素(SEA 法ではサブシステム)に分割され, そのサブシステム内の損失パワー,サブシステム間の 伝達パワー,サブシステム外からの入力パワーの平衡 関係から伝達を計算する.結果として,ある周波数帯 域の振動速度,音圧が求まるものである.

SEA 法では振動,音響をエネルギーという統一量 で表す.解析対象である構造物は多数のサブシステム と呼ばれる要素に分割される.図1に2つのサブシス テム系のパワーフローを示す.

SEA 法は,サブシステム内の損失パワー $P_{1d}$ ,  $P_{2d}$ , サプシステム間の伝達パワー $P_{12}$ ,サブシステム外か らの入力パワー $P_1$   $P_2$ の平衡関係からエネルギーを計 算する. 多サブシステム系は基本的に 2 サブシステ ム系の応用で表すことができる.



#### 4.入力位置の概要

図2に入力位置の概略図として橋梁の簡略断面を示 す.昨年度の SEA 法を用いた騒音予測の計算では, 入力位置は図 2 @ のように床版入力とし解析が行わ れた.しかし,実橋の鉄道橋での固体音はレールから 侵入し伝搬される.そこで,本研究では新たに軌道構 造を考慮し入力位置を図 2 @ のようにレールとし解 析を行う必要がある.



### 5.解析モデル

SEA 法では,サブシステムの分割により計算結果が 異なると考えられるので表1 表2のような Type-A お よび Type-B の2 つのタイプのモデルを考えた.橋梁 部の分割数により A, B の2 つの Type 分けをしてい る.ここで,表内に記してある[有][無]は軌道パット の有無であり,()の数字は1部材あたりの分割数 である.

表 1 Type-A の分割数 A-K (A-KS (G) (A-KS (G) (A-KS (G) (A-KP+SP) [有 [無] (有 [無] (有 (無) (A-KP+SP) (

|           | [13] | [] | [13] | [] | [[13] | [] | [13] | [2003] |    |
|-----------|------|----|------|----|-------|----|------|--------|----|
| レール :R    | 4    | 4  | 4    | 4  | 4     | 4  | 12   | 12     | 4  |
| 軌道パット:KP  | -    | 4  | -    | 4  | -     | 4  | -    | 4      | 4  |
| 軌道スラブ KS  | 2    | 2  | 6    | 6  | 14    | 14 | 2    | 2      | 2  |
| スラブパット:SP | -    | -  | -    | -  | -     | -  | -    | -      | 2  |
| 床版        | 1    | 1  | 1    | 1  | 1     | 1  | 1    | 1      | 1  |
| 横桁        | 8    | 8  | 8    | 8  | 8     | 8  | 8    | 8      | 8  |
| 縦桁        | 14   | 14 | 14   | 14 | 14    | 14 | 14   | 14     | 14 |
| 分割数合計     | 29   | 33 | 33   | 37 | 41    | 45 | 37   | 41     | 35 |

表 2 Type-B の分割数

| Type-B    | B<br>[有] | -K<br>[無] | B-K<br>[有] | S(3)<br>[無] | B-K<br>[有] | S (7)<br>[無] | B-F<br>[有] | ₹(3)<br>[無] | B-KP+SP |
|-----------|----------|-----------|------------|-------------|------------|--------------|------------|-------------|---------|
| レール :R    | 4        | 4         | 4          | 4           | 4          | 4            | 12         | 12          | 4       |
| 軌道パット:KP  | -        | 4         | -          | 4           | -          | 4            | -          | 4           | 4       |
| 軌道スラブ KS  | 2        | 2         | 6          | 6           | 14         | 14           | 2          | 2           | 2       |
| スラブパット:SP | -        | -         | -          | -           | -          | -            | -          | -           | 2       |
| 床版        | 21       | 21        | 21         | 21          | 21         | 21           | 21         | 21          | 21      |
| 横桁        | 24       | 24        | 24         | 24          | 24         | 24           | 24         | 24          | 24      |
| 縦桁        | 14       | 14        | 14         | 14          | 14         | 14           | 14         | 14          | 14      |
| 分割数合計     | 65       | 69        | 69         | 73          | 77         | 81           | 73         | 77          | 71      |

5-1) 軌道部モデルの寸法

軌道部はレール,軌道パット,軌道スラブ,スラブ パットの4要素とした.図3に軌道構造の概略として 軌道構造の断面図を示す.レールは,現在列車の高速 化,重量化に伴い使用頻度の高い60kgレールを使用 している.(a)は防振材無し,(b)は防振材有りの モデルである.



5-2) 音源のサブシステム番号

橋梁部は床版,縦桁,横桁の3要素の構成とした. 図4に23分割,図5に59分割のサブシステム番号を 示す.ここで,23分割では床版が1分割であるのに対 し,59分割では床版が分割されている.



図 5 Type-B(59 分割)

### 6.SEA 法の計算フローチャート

SEA 法の計算は, 図 6 のフローチャートに従って 行う.フローチャートより, 主要な SEA パラメータ は,モード数,内部損失率,結合損失率,入力パワー である.防振材の周波数特性検討にあたり,これらの パラメータをどのように扱うかが問題となる.本研究 では,防振材をサブシステムにモデル化し,内部損失 率h = 0.1 で計算した後,防振材を結合とみなした SEA 解析プログラムを作成した.



## 7.解析結果

7-1) 昨年の解析結果と比較

SEA プログラムにおいて,新たに軌道構造をモデル 化し解析を行った.昨年の23,59分割モデルと,今 年度の軌道構造を考慮したA-K[有],B-K[有]モデルの 計算値の比較を図7に示す.入力条件については昨年 と比較をするため入力振動加速度と入力位置を同じ 条件とした。

軌道部を考慮したことで,内部,結合損失率の影響 により,エネルギー損失が増大したため,音圧レベル が1~4dB低下している.しかし,この計算は入力位 置が床版全体となっており,実際の鉄道橋での固体音 伝搬を表現していない.よって,個々の形状が異なる 橋梁での騒音予測は,困難であるといえる.



図7 昨年の解析結果とモデル A, B の比較 7-1)入力の大きさの検討

レール入力とする際,入力の大きさの検討が必要に なる.そこで,入力の大きさの検討を行った.軌道構 造を考慮し,防振材無しのA-K[無],B-K[無]モデルの 計算値の比較を図8に示す.下図において,点線は, レールの質量のみで入力パワーを算出したものであ る.また,実線はレールと列車が同時に加振されると 考えた場合の計算結果である.これは,レール質量に 列車ばね下質量 M=100t を加え,入力パワーを計算し ている.

計算結果より,今回のレール入力での SEA 解析に おいて,入力の大きさはレール質量に列車ばね下質量 を加える必要があるといえる.



図 8 解析結果とモデル A, B の比較 7-2)防振材[無]-[有]の比較

防振材[無]の場合の計算結果を図9に示す.また, 防振材[有]とした場合の計算結果を図10に示す.ここで,Type-A,Bの両者ともに同じような結果を得たのでType-Bのみの解析結果を示す.

計算結果より,防振材[有]とすることにより,防振 材[無]の場合の計算結果と比べ,大きな減衰を表現す ることができた.しかし,防振材[有]での約 40dB の 減衰は,騒音予測ができているとはいえない.また, O.A.値からも分かるように,約 40~60dB の誤差がみ られる.SEA 法の解析において,防振材のような減 衰材料へ,サブシステムとして適用することは課題と されておる.今回の計算結果においても,サブシステ ムとしての適用は困難であるといえる.

そこで,防振効果をサブシステムとしてではなく,防振材そのものが弱結合であると仮定した.そして,防振材のエネルギー損失を結合損失率として得られるのではないかと考えた.



図 10 Type-B[有]モデルの音圧レベル

7-3)防振材を結合とした場合

防振材をサブシステムとしてではなく,結合要素とした場合の計算結果を図11,図12に示す.

計算結果より,防振材の防振効果を結合損失とし て与えることで,防振材[有]および[無]とした場合の 計算結果と比べ,高周波数域の音圧レベルのスペクト ル形状を実測値に近づけることが可能となった.O.A. 値に関しても,多少の誤差はあるが,比較的に実測値 と近い値を示していることがわかる.Type-B-K モデ ルにおいては,実験値と比べ約 2dB の誤差で予測で きている.また,分割数の影響について考察すると, Type-A の場合においては,分割数の影響は少なく, 音圧レベルとしては表れていないということが分か る.Type-B の場合は,軌道スラブを分割することで, 音圧レベルの低下がみられ,分割数により音圧レベル 予測精度に大きく影響していることがわかる.今回の 解析結果において,Type-B の場合は,軌道スラブは



図 12 Type-B モデルの音圧レベル(結合) 7-4)防振材を結合とした場合の効果

ここで,結合とした場合の確認を行う.Type-A,B の両者ともに同じような結果を得た.よって,一例と して,Type-B-K モデルについての結合効果の周波数 特性のみを示す.計算値により,軌道部の透過係数を 求めることで結合効果をみた.図13はB-K[無]モデル, 図14はB-K[有]モデル,図15は防振材を結合とした 場合の透過係数である.ここで,図中のER/ESはレ ール 軌道スラブ間,ES/Ecpは軌道スラブ 床版間 の透過係数1/tを示している.なお,透過係数1/tは 対数で示している.

図 13 より, B-K[無]モデルの場合の透過係数は, ほ ぼ一定の値を示していることがわかる.また,図 14 より, B-K [有]モデルの場合の透過係数では,レール - 軌道スラブ間の透過係数は高周波数域になるにつ れ増加している.さらに,軌道スラブ-床版間の防振 効果は B-K[無]モデルと同様に一定値を示しているこ とがわかる.一般的に防振材を挿入すると,共振域と 防振域を示す.よって,前述のモデルの場合は,防振 材による防振効果とは一致しないことが分かる.一方, 図 15 の B-K モデル(結合)の場合では,高周波数域 に向かい透過係数が増大していることが分かる.よっ て,防振材の防振効果の周波数特性が取り入れられた といえる.



図 15 Type-B-K モデルの防振効果(結合)

### 8.まとめ

昨年の SEA プログラムに新たに,軌道部のモデル を加えることにより,レール入力での SEA 解析によ る騒音予測が可能となった.軌道構造を考慮したとき の入力の大きさ,分割数についてよりよい方法を提案 できた.また,防振材要素をサブシステムとしてでは なく,結合要素として計算することにより,SEA 解 析において,防振効果の周波数特性を導入できた.軌 道部による,防振効果をサブシステム間の透過係数に より確認できた.これにより,各橋梁において,防振 材の透過率をデータベース化することにより新橋に おいても簡易的に騒音予測ができるのではないかと いえる.

課題として,透過率の理論的推定法の確立.ゴムパットの結合損失率を実験により測定し,データベース化を図る等が挙げられる.