<u>固体酸化物燃料電池用</u> <u>La(Ni, Fe)O3</u>空気極における電極反応活性

環境材料研究室 花村 勇太

指導教員 佐藤 一則

<u>1. 研究背景</u>

近年、エネルギーの大量消費に伴い、化石燃 料利用と人工化学物質の大量使用などによる 大規模な環境汚染、および生態系の破壊が地球 上の至る所で進行している。地球温暖化の原因 となる大気中の二酸化炭素濃度の増加もその 一つである。このような地球規模での環境問題 を解決する手段として、現在の化石燃料中心と したエネルギーシステムを根本から見直す必 要が早急に求められている。化石燃料の消費を 抑制することは、大気中に放出される二酸化炭 素の発生量を抑え、また、燃焼する際の熱エネ ルギーおよび副生する硫黄酸化物、窒素酸化物 の大気中への放出を削減すことができる。また、 化石燃料の消費量を抑えるということは、後世 に貴重な化石燃料資源を残せることになり、資 源有効利用の立場からも非常に重要である。

化石燃料からより高い効率で質の高いエネ ルギーを取り出すことは、化石燃料の消費削減 につながる。質の高いエネルギーとは、一般に 他のエネルギーに変換しやすく、変換する際の エネルギー損失が極めて少ないものを示す。し かし、より効率よくエネルギーを取り出せたと しても根本は現在まで開発されていた技術の 延長線上にあり、二酸化炭素の大気中への放出 を問題とするのであれば、たとえ変換効率が向 上したとしても代替エネルギーが開発される までの過渡的な意味でしかない。また、産業革 命以来爆発的に増加した化石燃料消費の社会 基盤を元に戻すということは、極めて困難であ る。そのため、化石燃料のエネルギー変換効率 向上が、最も現実的な方法であるといえる。変 換効率の向上は、燃料消費量の減少だけでなく、 大気中に放出される二酸化炭素・窒素酸化物・ 硫黄酸化物・廃熱などの減少も期待できる。

化学エネルギーを、直接電気エネルギーに変 換できるものとして燃料電池がある。各種エネ ルギー変換システムの中でも最も発電効率が 高く、将来的に大いに期待されている発電方式 である。用いる電解質の種類によって数種類の 発電方式があり、それぞれの分野で開発が盛ん に行われている。

<u>2. 研究目的</u>

本研究では、燃料電池の中で発電方式が最も 高い固体酸化物燃料電池(SOFC)に注目した SOFCの動作原理を図1に示す。

これまで、1000 ℃付近の高温で動作する SOFC については、数多く研究開発がなされてきた。し かし、高温動作において、エネルギー変換効率は 向上するが電極の焼成や電極・電解質界面での相 互拡散による材料上の問題を引き起こす。この問 題の解決策として SOFC の動作温度を下げること が有効であると考えられる。低温動作化により、 電極・電解質材料選択の幅が広がるが、電極・電 解質中の電子伝導性およびイオン伝導性の低下 が生じる。したがって、SOFC 構成材料の電子・ イオン伝導性向上が非常に重要であると考えら れる。B サイトに Co イオンを含むペロブスカイ ト型酸化物の La_{0.6}Sr_{0.8}CoO₃(LSC)は、一般的な 空気極材料である La_{0.8}Sr_{0.2}MnO₃(LSM)よりも非 常に高い伝導性を持つ。しかし、この材料の熱膨 張係数は、LSM(12.0×10⁻⁶ K⁻¹)よりも非常に高い 値である(LSC: 20.0×10⁻⁶ K⁻¹), SOFC において、 熱膨張係数は機械的性質を大きく左右し、電解質 材料とのマッチングが必要不可欠であることか ら、Coイオンを Mn や Fe イオンに置換すること によって、この熱膨張問題を解決する研究も進め られている。これらの研究では、熱膨張係数が組 成の関数として変化することを示している。つま り、La(Sr)CoO3中の Co 濃度の減少は導電率の低 下を意味する。したがって、異なる材料系の空気 極材料の開発が必要である。

LaNiO₃ はペロブスカイト型の酸化物であり、 室温で非常に高い導電率を持っている。しかし、 この材料は 850 ℃ 以上で不安定であり、K₂NiF₄ 構造の La₂NiO₄ と NiO に分解する。それら分解相 の導電率は低く、SOFC 空気極材料の適用は困難 である。

本研究では、Ni を Fe イオンによって置換した LaNi_{1-x}Fe_xO₃(LNF)に着目した。LNF の結晶構造 を図 2 に示す。LNF は、高い導電率とジルコニア 電解質に近い熱膨張係数から、空気極材料として 非常に有望であるが、これまでに空気極として用 いた報告はほとんどなく、LNF 空気極に関する電 極反応機構は明確でない。

以上のことから、本研究ではLNFのSOFC空気 極としての電極性能を、放電特性測定・空気極過 電圧測定および2次電子像による微細組織観察を 行い、従来材料であるLSMと比較し評価を行っ た。また、高負荷発電状態におけるセル性能の経 時変化・交流インピーダンス測定による界面抵抗 の測定、および両空気極の活性化過電圧における アレニウスプロットから活性化エネルギーを算 出し、LSM および LNF の電極反応活性の相違を 検討した。

<u>3. 実験方法</u>

測定するセルは、電解質としてイットリア安 定化ジルコニア(YSZ)を用いた。セル外略図 を図3に示す。燃料極にはNi-10 mol%Sc2O3-1 mol%Al2O3-89 mol%ZrO2(SASZ)スラリー を用い、空気極としてLNF(1000 ,4 h 焼成) 及びLSM(1300 ,4 h 焼成)スラリーを用い た。同条件での測定を行うため、1 枚のセルに 2 種類の空気極を焼成した。運転温度は850 とし、燃料ガスには H2(100 ml/min)酸化ガ スにはO2(100 ml/min)を用いた。一定な高い 放電電流の高負荷状態で長時間発電し、放電特 性と電流遮断法による過電圧測定、交流インピ ーダンス測定を行い経時変化を観察した。

<u>4. 結果</u>

図 4 に LNF 空気極および LSM 空気極を用い たセルの放電特性を示す。 LNF 空気極は従来材料である LSM 空気極と 比較し、非常に高い発電特性を示した。図 5 に 空気極反応抵抗成分である過電圧測定結果を 示す。LNF 空気極は従来材料の LSM よりも空 気極過電圧が大幅に減少した。

図6はLNF空気極およびLSM空気極過電圧 の経時変化を検討した結果である。発電を開始 し、端子電圧を0.2 Vとなるように調節しなが ら保持し、安定状態に達してから測定を開始し た。発電開始後0hの空気極過電圧はLSM,LNF 共に高いが、通電処理を行うことで過電圧は減 少し、特にLNFでは約1/2まで減少した。LNF 空気極過電圧は LSM 空気極過電圧に比べ経時

図7は、LNF空気極過電圧の経時的変化を示している。各電流密度の過電圧値は、ほぼ同じ 傾向を示しながら時間経過とともに減少し、24 時間以降で安定状態に達した。

図8は、端子電圧が0.2 Vとなるように適宜 電流値を調節し、850 で18hまで保持した高 負荷な運転状態が、空気極の活性化過電圧に影 響を及ぼすことを分極抵抗の逆数に対するア レニウスプロットから示したものである。LSM 空気極において、活性化エネルギーの変化はほ とんど見られないが、LNF 空気極においては、 発電初期の0hの段階から傾きの変化が大きく、 活性化エネルギーは増大した。さらに、通電に よる界面抵抗の変化を交流インピーダンス法 にて測定した。発電を行う直前、および通電を 開始し安定状態に達した後の LNF および LSM 空気極の界面抵抗測定結果を図9に示す。通電 を行っていない状態では両空気極にアークの 相違が見られた。LNF は直流抵抗成分が高いが 通電後大幅に減少し、LSM は増加した。また、 虚数成分を比較するとアークの立ち上がりは、 LSM 空気極が LNF 空気極よりも高い傾向を示 した。

 $10 \, \mathrm{kHz}$

<u>5. 結論</u>

LNF 空気極および LSM 空気極を用いたセル の放電特性、空気極過電圧測定および分極抵抗 の温度依存性より、LNF 空気極は LSM 空気極 よりも電極反応活性が高いことを示した。空気 極過電圧の経時的減少傾向は、LNF 空気極と電 解質界面の接触性が向上した可能性が考えられる。また、交流インピーダンス法による界面抵抗測定結果から、LNF空気極は、通電処理を行うことで電極・電解質界面における電気的抵抗が減少し、電極性能が向上することを示した。

空気極過電圧のアレニウスプロットを用いた結果より、LSM 空気極と LNF 空気極では電極反応における活性化エネルギーに顕著な違いがあり、LNF はその高い電子伝導性から、図10 に示す三相界面近傍での反応場への電子の供給速度が速く、LSM よりも酸素還元反応速度が向上していることを示した。

図10 空気極酸素還元反応過程模式図

また、活性化エネルギーを必要とする電解質 /空気極界面での酸化物イオンの受け渡しに対 して、LNF 空気極は LSM 空気極よりも、より 多くの熱エネルギーを必要とし、このことが LNF に対する活性化エネルギー上昇の要因に なっていると考えられる。しかし、LNF 空気極 はその反応サイト数の多さから、十分な熱エネ ルギーが供給されれば LSM 空気極よりも高い 電極反応活性を示すことを明らかにした。