1. はじめに

鉄筋コンクリート構造物の耐久性向上,塩害 対策,耐震補強のために,鋼材に比べ引張強度, 耐腐食性に優れ,かつ軽量である炭素,アラミ ド,ガラスなどの連続繊維をコンクリート用補 強材として使用する研究が進められ,実構造物 への適用も行われている。その多くは連続繊維 をエポキシ樹脂で固めたFRPとしてコンクリー ト用補強材として使用するものであり,これま でに,連続繊維棒材,連続繊維シートが広く実 用されている¹⁾²⁾。

一方,そのほかの形態のコンクリート用連続 繊維補強材についての研究もさかんに行われて いる。本研究で使用するロープ状連続繊維補強 材(写真 - 1,以下 CF Rope)は,エポキシ樹脂な どを使用しない,繊維単体からなる新素材であ る。さまざまな形状に容易に加工することがで きるので,可搬性,配筋の作業性に優れるとい う利点がある。

連続繊維補強コンクリート部材のせん断性状 および評価方法について,最近の15年間,数多 くの研究が行われ,連続繊維の力学的性質が鋼 材と大きく異なることから,そのせん断特性は

写真 - 1 ロープ状連続繊維補強材

コンクリート研究室 田坂 雄治 指導教官 下村 匠

多くの点において鉄筋コンクリート部材とは異 なることが確認されている。

CF Rope をコンクリート用補強材として使用 するには,基本的な材料特性として引張特性が 必要となる。しかしながら,この種の材料の引 張試験においては,供試体端部の定着方法,ひ ずみの測定方法に工夫を要する。連続繊維は一 般に一方向性材であるため,せん断,支圧強度 が低く,定着方法が強度試験結果に影響する。 このため,使用する材料の性質,形状などによ り適切な定着方法の選定が必要となる。

そこで本研究では、CF Ropeの引張特性を調査 するため、引張試験方法について検討を行った。 また、CF Ropeのコンクリート用補強材への適用 として、せん断補強筋として使用することを試 みた。

2. CF Rope の引張試験概要

2.1 はじめに

FRP 棒材の定着装置は,鋼管またはテーパ状の鋼管に FRP 棒材を挿入し,その隙間にエポキシ樹脂,モルタル,膨張材などを充填し,鋼管と FRP 棒材を一体化させる方法が主に用いられている。

予備実験として,鋼管に CF Rope を挿入し, 充填材としてエポキシ樹脂と定着用膨張材を使 用し比較を行った。その結果,エポキシ樹脂を 使用した場合は,CF Rope の引き抜けまたは鋼管 内で繊維の破断が生じた。一方,定着用膨張材 を使用した場合は,試験区間での破断は起こら なかったが,強い付着強度を示した。従って本 研究では,充填材として定着用膨張材を使用す ることとした。

表 - 1 繊維素材の物性

繊維	アラミド	
引張強度(MPa)	2920	
弾性係数(MPa)	70500	
伸び率(%)	3.6	
密度(g/cm ³)	1.44	

図 - 1 供試体概略図

2.2 使用した繊維材料

本研究で使用したCF Ropeの素材はアラミド 繊維である。繊維素材の物性値を表 - 1 に示す。 CF Ropeはこの繊維よりなる 8 本の繊維束(繊維 束 1 本は 6000 本のフィラメントを束ねたもの) を組紐状に成形加工したものである。組紐状に した状態での断面積は 5.56mm²である。

2.3 引張試験用供試体の作製

試験に用いる CF Rope はすべて同一ロットか ら採取した。定着部にエポキシ樹脂による保護 被膜を施した Type B 供試体 32 本、保護被膜を施 していない Type A 供試体 12 本の計 44 本の供試 体について引張試験を行った。

引張試験用の供試体の概略図を図 - 1 に示す。 試験区間はいずれも 450mm とした。Type B の供 試体は,鋼管内での繊維の破断を防ぐため,端 から 260mm までの区間にエポキシ樹脂を含浸硬 化させた。

2.4 引張試験方法

鋼管を直接,引張試験装置のチャックで固定 し,引張力を載荷した。

いくつかの供試体では繊維の伸びひずみを計 測した。ひずみの測定は,試験区間中央に接着 したひずみゲージにより行った。ひずみゲージ

表-2 破断形式別の試験結果

	Type A	Тур	be B
破断箇所	口元	境界	中央
サンプル数	12	24	8
平均破断荷重(kN)	10.92	11.62	12.08
平均引張強度(MPa)	1963	2090	2173

表 - 3 引張試験結果

		Type A	Type B
地彩芦青	平均值	10.92	11.74
吸凹间里 (kN)	標準偏差	0.72	0.67
	変動係数(%)	6.64	5.75
平均引張強度(MPa)		1963	2111

は,検長 5mm の複合材料用ひずみゲージを使用 した。供試体中央の繊維表面に樹脂を塗布し, 硬化後表裏対称となる位置に2枚貼付した。

3. 実験結果

本実験で実施した全ての供試体は,定着部分 で繊維が引き抜けることなく,最終的には繊維 の破断により試験が終了した。繊維の破断形態 は3パターンで,保護皮膜のない供試体(TypeA) は,鋼管の口元で破断が生じ,保護皮膜を施し た供試体(TypeB)においては,試験区間の中央 で破断が生じたものと,保護皮膜による補強区 間と試験区間の境界で破断が生じたものが確認 された。

表 - 2 に破断形式別の実験結果,図 - 2 に Type A および Type B の破断荷重と破壊確率の関係を それぞれ示す。図 - 2および表 - 2に示すとおり, 破断形式別の平均破断荷重は口元破断,境界破 断,中央破断の順に増加している。

表 - 3 に Type A, Type B の破断荷重の平均 値,標準偏差,変動係数を示す。表 - 3 より, 破断荷重について Type B は Type A に比べ,約 10%程度大きくなっている。これは供試体の破 断形態の違いによるものである。鋼管の口元 で破断した Type A 供試体による結果は,正しい材料の強度を表していないと思われる。

実験結果のばらつきは Type A については変動 係数 6.64%, Type B では変動係数 5.75% といずれ も小さく,信頼できる結果と考えている。

表 - 4 に弾性係数と破断ひずみの平均値,標準 偏差,変動係数を示す。弾性係数は荷重-ひず み曲線から引張荷重の20%と60%の割線勾配よ り算出した。供試体の破断時のひずみは測定で きなかったため,破断ひずみは破断荷重と弾性 係数より算出した。変動係数は弾性係数につい

表 - 4 CF Rope の弾性係数と破断ひずみ

	弾性係数(MPa)	破断ひずみ(%)	
サンプル数	15	15	
平均值	97515	2.1	
標準偏差	5278	0.17	
変動係数(%)	5.41	7.87	

ては 5.41%, 破断ひずみについては 7.87% と精度の良い結果が得られたと考えている。

4. CF Rope を用いたはりのせん断試験

4.1 使用材料

本研究で使用した補強材の材料特性を表 - 5 に示す。供試体はせん断破壊を先行させるため, 主筋には高強度異形鉄筋 (D22, USD685B)を使 用した。また,組立筋には異形鉄筋 D10(SD295A), せん断補強筋には CF Rope と異形鉄筋 D10(SD295A)を使用した。

コンクリートはレディーミクストコンクリ ートを使用した。コンクリートの呼び強度は 36N/mm² 細骨材の最大寸法は25mmとした。 4.2 供試体の寸法形状および配筋方法

図 - 3 に供試体の寸法および断面形状の一 例を示す。

せん断補強筋のひずみおよびひび割れ幅の 観察を容易にするため,右側を試験区間(せん 断区間),反対側を非試験区間(補強区間)とし た。非試験区間には十分な鉄筋スターラップ

種別	SD295A	USD685B	
公称直径(mm)	9.53	22.2	
呼び名	D10	D22	
用途	せん断補強筋	主筋	
公称断面積(mm²)	71.33	387.1	
弾性係数(Pa)	175310	194026	
降伏強度(MPa)	364	704	

表-5 補強材の材料特性(鉄筋)

を配置し, この区間でせん断破壊が生じない ようにした。供試体は せん断補強筋のない はり(No.1) せん断補強筋に異形鉄筋 D10 を 150mm 間隔で配置したはり(No.2) CF Rope を 150mm 間隔で配置したはり(No.3) CF Rope を 100mm 間隔で配置したはり(No.4)の 4 体を使用した。

CF Rope の配筋は,曲げ成形部でずれるのを防 ぐため,CF Rope と主筋および組立筋との角度が 一定となるように配置した。両端は CF Rope を 組立筋に結び,結び目をエポキシ樹脂で固定し た。CF Rope の配筋には,特別な機械などは使用 せず,すべて手作業で行った。

5. 実験結果

5.1 ひび割れ挙動

図 - 4 に各供試体の終局状態でのひび割れ状況を示す。図中の太線は最終的なせん断破壊断面を表す。せん断補強筋に D10 を使用した供試体は油圧ジャッキの限界値である 500kN まで載荷を行ったが破壊に至らず,試験を中断した。

せん断補強筋に CF Rope を使用し,150mm 間 隔で配置した供試体は,せん断補強筋のない供 試体に比べ,曲げひび割れが多く発生している。 また,せん断ひび割れも複数発生していること がわかる。せん断ひび割れ(太線)の角度は,せん 断補強筋に D10 を用いた供試体に比べ緩やかで, その角度は28°となった。

一方, せん断補強筋に CF Rope を使用し,100mm 間隔で配置した供試体は, No.3 の供試体

図 - 6 ひずみゲージ貼付位置 No.3 (CF Rope@150)

No.3 (CF Rope@150)

に比べせん断補強筋を密に配置しているが,部 材の終局荷重が低いため曲げひび割れの数は少 なくなった。せん断ひび割れは,角度の異なる ひび割れが複数発生した。その中で最終的に破 断に至ったせん断ひび割れの角度は, No.3 の供 試体に比べ急で45°となった。

4.2 荷重 变位関係

図 - 5 に各供試体の荷重 - 変位関係を示す。図 より,各供試体において,曲げひび割れ発生後, はりの剛性が低下し斜めひび割れ発生に至るま で同じような挙動を示している。

せん断補強筋に CF Rope を 150mm 間隔で配置 した供試体は、せん断ひび割れ発生後、一度荷 重が低下,その後再び荷重が増加し,最終的に はCF Ropeの破断により急激に耐荷力を失った。

CF Rope を 100mm 間隔で配置した供試体は, No.3 に比べ CF Rope を密に配置しているにもか かわらず,最大荷重は,No.3の供試体よりも減 少した。No.4 の挙動は,最大荷重に達した後, 一度荷重は減少するものの,ある一定の荷重の 元で変位が増加する領域が存在した。最終的に は,圧縮側コンクリートの圧壊により部材は終 局状態となった。

4.3 せん断補強筋のひずみ

図 - 6 に No.3(CF Rope@150)の供試体におけ るひずみゲージ貼付位置を示す。また,図-7は 各荷重ステップにおけるせん断補強筋のひずみ 分布を示している。図より,ひび割れを跨ぐせ ん断補強筋においてほぼ均等にひずみの増加が 見られる。

図-8 は断面の高さ方向に貼付したひずみゲ ージによる荷重 変位関係を示している。図よ リ, せん断ひび割れ発生荷重付近から, a~c 点に おいて急激なひずみの増加が見られる。この急 激なひずみの増加は, せん断ひび割れ発生後の 一時的に荷重が減少する点と一致する。CF Rope は樹脂で固めていないフレキシブルな状態のた め, せん断ひび割れ付近で局所的にひずみが増 加したものと思われる。せん断ひび割れから離 れた d, e 点では, 急激なひずみの増加は見られ

表-6 実験結果

供試体 No	せん断補強筋	配置間隔 (mm)	$V_c(kN)$	V _u (kN)	$V_{cf}(\mathbf{kN}) = V_u - V_c$
1	なし		98.10		
3	CF Rope	150	98.10	194.90	96.80
4	CF Rope	100	98.10	155.93	57.83

なかった。また,終局ひずみも,a~c点と比べる と小さくなっていることから,せん断ひび割れ から離れた地点では,CFRopeとコンクリートに 付着があるものと思われる。

4.4 CF Rope によるせん断補強効果

従来の鉄筋コンクリートはりにおけるせん断 耐力は修正トラス理論式($V_u=V_c+V_s$)により,コン クリートの受け持つせん断力 V_c とせん断補強筋 の受け持つせん断力 V_s の和として考えられる。

CF Ropeをせん断補強筋として用いたはりに おいても同様の手順を用いて, CF Ropeの受け持 つせん断力 V_{cf} の評価を行った。コンクリートの 受け持つせん断力 V_c は, せん断補強筋のない供試 体(No.1)におけるせん断ひび割れ発生荷重とし, CR Ropeの受け持つせん断力 V_{cf} は,供試体の終局 荷重 V_u と V_c の差とした。表 - 5 に実験結果を示す。

- 5. まとめ
- 定着用膨張材により、繊維の引き抜けまたは鋼管内での破断することなく CF Rope を定着させることができた。
- 2) 定着部の繊維にエポキシ樹脂を含侵硬化 させ補強することにより CF Rope を試験 区間で破断させることができた。
- 樹脂で複合化されていない CF Rope をせん断補強筋として用いることで、せん断補強効果が得られることが明らかとなった。

参考文献

- 1) 土木学会:連続繊維補強材を用いたコンクリート構造物の設計・施工指針(案),コンクリートライブラリ-88,1996.9
- 2) 土木学会:連続繊維シートを用いたコンクリ ート構造物の補修補強指針,コンクリートラ イブラリ-101,2000.7