河口域を対象とした波、流れ、地形変化に関する研究

水工学研究室 星野 雄亮 指導教官 細山田 得三

1. 研究背景

平成16年7月13日の新潟県の豪雨災害では、五十嵐 川(三条市)、刈谷田川(中之島町)、猿橋川(長岡市北部) において河川の堤防決壊による洪水被害が発生した。阿賀 野川流域では洪水氾濫による被害は発生しなかったもの の、土砂災害は散発的に発生し、水位・流量ととも警戒値 を大幅に越えた地点がある。

阿賀野川下流部の治水安全上で課題の 1 つとして河口 砂州が挙げられる。阿賀野川の河口砂州の問題点として、 まず、砂州による河口閉塞により、洪水時に水位が上昇し、 水害が発生しやすくなる。さらに、砂州に土砂が溜まるこ とにより、河口部付近の飛砂、船舶の安全な航行への支障 などの影響がある。また、豪雨時には、フラッシュ現象と いう川の水が勢いよく流れることによって、砂州は削られ る。砂州が取り除かれると、塩水遡上が発生し、塩水によ る取水施設への被害が懸念されている。また、河口部に住 む生物への影響がある。河口砂州の動態を理解することが 重要である。本研究では、フラッシュ現象により砂がなく なった状態から、海岸波動モデルによる冬季での砂州形成 を再現した。

2. 研究の目的

本研究では、数値シミュレーションを用いて、モデル地 形の河口域の波、流れを表現する。さらに、多方向不規則 波と海浜流による漂砂を使い、河川を加えた地形変化を行 い、河口砂州を表現することを目的とした。

3. 数值計算方法

計算には、より実海域に近い多方向不規則波を用いた。 波浪緒元により、まず方向スペクトルのプログラム代入し、 次にそのデータを造波信号の作成プログラムからデータ を出力する。そのとき各造波境界上の水位の時系列とし、 多方向不規則波は成分の重ね合わせとして表示する。また、 波を修正プシネスク方程式によって再現した。そして底質

写真1 阿賀野川下流部(河口砂州)

移動とこれに伴う海底地形変化の計算は、浮遊砂と掃流砂 を海浜流の特性量を連結させるベイラードによって提案 されたモデルを用いて行った。

以上に示した計算を時間発展させる際には、波動場、海 浜流場、海底地形変変化の支配方程式を1つの時間ステッ プ内で計算することにより、各要素が互いに影響しながら 時間発展するようにしている。

3.1 波動場の計算

本研究では、平面2次元の波浪場における基礎方程式の 連続式(1)と修正プシネスク方程式(2)、(3)を用いては動場 の計算を行った。連続式と運動量方程式

$$\frac{\partial \eta}{\partial t} + \frac{\partial Q_x}{\partial x} + \frac{\partial Q_y}{\partial y} = 0 \tag{1}$$

$$\frac{\partial Q_x}{\partial t} + \frac{\partial}{\partial x} \left(\frac{Q_x^2}{D} \right) + \frac{\partial}{\partial y} \left(\frac{Q_x Q_y}{D} \right) + g D \frac{\partial \eta}{\partial x} + MD$$

$$= \left(B + \frac{1}{3} \right) h^2 \frac{\partial}{\partial x} \left(\frac{\partial^2 Q_x}{\partial t \partial x} + \frac{\partial^2 Q_y}{\partial t \partial y} \right) + Bg h^3 \left(\frac{\partial^3 \eta}{\partial x^3} + \frac{\partial^3 \eta}{\partial x \partial y^2} \right)$$

$$\frac{\partial Q_y}{\partial t^2} + \frac{\partial}{\partial t} \left(\frac{Q_x Q_y}{\partial t^2} \right) + \frac{\partial}{\partial t} \left(\frac{Q_y^2}{\partial t^2} \right) + g D \frac{\partial \eta}{\partial t^2} + MD$$
(2)

$$\frac{\partial f}{\partial t} + \frac{\partial g}{\partial x} \left(\frac{\partial f}{\partial y} \right) + \frac{\partial g}{\partial y} \left(\frac{\partial f}{\partial y} \right) + gD \frac{\partial g}{\partial y} + MD$$

$$= \left(B + \frac{1}{3} \right) h^2 \frac{\partial}{\partial y} \left(\frac{\partial^2 Q_x}{\partial t \partial x} + \frac{\partial^2 Q_y}{\partial t \partial y} \right) + Bgh^3 \left(\frac{\partial^3 \eta}{\partial y^3} + \frac{\partial^3 \eta}{\partial y \partial x^2} \right)$$
(3)

ここで、*Qx*,*Qy*は*x*,*y*方向の線流量、ηは水面変動量、*h* は静水深、*B*はプシネスク方程式の形による定数(=1/21)、 *D*は全水深、*t*は時間、*MD*は砕波による運動量減衰項で ある。

砕波による運動量減衰項は式(4)、(5)を用いて計算する。

$$MD_{x} = v_{e} \left(\frac{\partial^{2} Q_{x}}{\partial x^{2}} + \frac{\partial^{2} Q_{x}}{\partial y^{2}} \right)$$
(4)

$$MD_{y} = v_{e} \left(\frac{\partial^{2} Q_{y}}{\partial x^{2}} + \frac{\partial^{2} Q_{y}}{\partial y^{2}} \right)$$
(5)

ここで、 v_e は渦動粘性係数であり式(6)、(7)で示される。

$$v_e = \frac{gd}{\sigma^2} f_D = \frac{\alpha_D sgd}{\sigma^2} \sqrt{\frac{g}{d} \frac{\hat{Q} - Q_r}{Q_s - Q_r}}$$
(6)

$$v_e = 8 \times 10^{-4} \sqrt{gd} \frac{d}{s} \tag{7}$$

ここで、 f_D は砕波減衰係数、 α_D は砕波帯で 2.5 となる係数、 σ は角周波数、 Q_s, Q_r は次式である。

$$Q_{s} = 0.4(0.57 + 5.3s)\sqrt{gd^{3}}$$

$$Q_{r} = 0.135\sqrt{gd^{3}}$$
(8)

ここで、sは海底勾配、dは平均水深である。本研究で は、砕波帯内での地形変化の現象も対象としているため、 砕波点の計算を行う必要があり、砕波点の決定は式(6)の 平方根内の符号が正であれば砕波したと判定、負であれば 砕波しないと判定する。そして、砕波したと判定されれば 式(4)、(5)を考慮し、式(6)の渦動粘性係数を用いて運動量 方程式を解くようにした。また、砕波しないと判定した場 合には式(7)を用いる。

本研究では砕波による運動量減衰以外にも海底摩擦に よる運動量減衰も考慮した。この海底摩擦による運動量減 衰は次式で計算される。

$$\tau_x = \frac{gn^2 \times U\sqrt{U^2 + V^2}}{h^{1/3}} \quad \tau_y = \frac{gn^2 \times V\sqrt{U^2 + V^2}}{h^{1/3}} \tag{9}$$

ここで、*n*はマニングの粗度係数、*U*,*V*は*x*,*y*方向の 断面平均流速であり、次式で示される。

$$U = \frac{Q_x}{h+\eta} \quad V = \frac{Q_y}{h+\eta} \tag{10}$$

3.2 海浜流場の計算

海浜流は地形変化に影響を及ぼす要因である。本研究で は、海浜流の底面流速を数値計算における代表的な抵抗則 であるバルク公式とマニング公式の2 式から底面流速を 導く式を誘導し、これから求めるケースと、微小振幅波理 論に基づいた伝達関数から求めるケースの2 ケースにつ いて行った。抵抗則を用いるケースは式(11)、伝達関数を 用いるケースは式(12)を用いることで、底面流速を求めて いる。

$$u_{b} = \sqrt{\frac{gn^{2}/h^{1/3}}{f_{c}}} \times U \qquad v_{b} = \sqrt{\frac{gn^{2}/h^{1/3}}{f_{c}}} \times V$$
(11)
$$u_{b} = U \times \alpha \qquad v_{b} = V \times \alpha$$
(12)

ここで、 f_c は海底摩擦係数、 α は伝達関数である。

3.3 底質移動及び海底地形変化の計算

海底地形の変動については、イラードによって提案され た、海浜流底面流速をもとに浮遊砂量、掃流砂量といった 局所漂砂量を求めるモデル、式(13)、(14)を適応し、式(15) によって体積漂砂量とその分布を求めた。

$$\vec{q}_B = \frac{C_f \varepsilon_B}{(\rho_s / \rho - 1)g \tan \phi} \left(\vec{u}_b |\vec{u}_b|^2 - \frac{s}{\tan \phi} |\vec{u}_b|^3 \vec{i} \right)$$
(13)

$$\vec{q}_{S} = \frac{C_{f}\varepsilon_{S}}{(\rho_{s}/\rho - 1)gw_{s}} \left(\vec{u}_{b} |\vec{u}_{b}|^{3} - \frac{\varepsilon_{S}}{w_{s}} s |\vec{u}_{b}|^{5} \vec{i} \right)$$
(14)

$$\vec{q} = \vec{q}_B + \vec{q}_S \tag{15}$$

ここで、q は体積漂砂量、 q_B は掃流砂量、 q_S は浮遊砂 量、 ρ_S は底質の密度、 ρ は水の密度、 C_f は抗力係数、 $\tan \phi$ は底質の内部摩擦角、 w_S は底質の沈降速度、 $\varepsilon_B, \varepsilon_S$ はそ れぞれ掃流砂、浮遊砂に対する無次元定数、 u_b は海浜流 底面流速である。上記に示した式によって求められた体積 漂砂量を局所的な勾配の影響を考慮した修正式(16)によ って修正し、底質の連続式(17)で地形変化の計算を行う。 $a_{-}=a+\epsilon|a|\nabla\cdot zb$

$$A_m - q + \varepsilon |q| + \varepsilon \varepsilon$$

$$\frac{\partial zb}{\partial t} = (\lambda - 1)\nabla \cdot \vec{q}_m \tag{17}$$

ここで、 q_m は局所漂砂量、 λ は底質の空隙率、zb は地盤標高、 ε は局所的な勾配の影響を表す係数である。

4 計算条件

計算領域としては、全体で 500m × 500m のモデル地形 であり、5m × 5m のスカガード格子を使った。地形は図 1 のように配置し、海岸は一様勾配で、沖側に造波境界を設 置した。なお、計算領域周辺での波を吸収するためスポン ジ層を設置した。さらに、有義周期や有義波高は、新潟海 岸での冬季の代表的なものを使い、9.0s、4.0m とした。 なお、計算時間間隔は 0.1 秒である。

5 計算結果

5.1 波の伝播

図2に造波開始から1000秒後の水位変動の瞬時値を図 化したものを示す。沖側では様々な周期の多方向性、不規 則性を持った波が見られるが、汀線に近づくにつれて波が 汀線に平行になる傾向がある。また、汀線付近においては 水深の変化による一時的な波高の増大が見られる。河口周 辺で発生している波は、海の波が河川遡上をしているのか、 河川の波であるのかは判断できない。しかし、河口周辺で の波峰線が湾曲していることから、少なからず河川からの 波による影響はあると考えられる。

5.2 砕波減衰係数

図3に造波開始から1000秒後の砕波減衰係数の瞬時値 を図化したものを示す。沖側と汀線付近で砕波が発生して いることが分かる。沖側で発生している砕波は、多方向性 を持った波どうしが衝突したために発生した砕波である と考えられる。また、汀線付近で発生している砕波は、海 岸構造物が設置していないため、汀線付近まで波がエネル ギーを蓄えたまま進行してきたため、発生した砕波である と考えられる。また、河口付近にでも砕波が発生している。

(造波開始から 50 分~200 分)

5.3 海浜流

図4に造波開始から50分~200分の流速の時間平均値 とする海浜流を図化したものを示す。計算領域では、左上 から波は流れて、図の下の河口へと流れているのがわかる。 これは、今回の主波向きを45°に設定しているため、こ のような流れになっており、正しく表せていると考える。 また、河口付近では、波が流れ込んでいるが、河川の中に は、流れが停滞している。これは、波が45°の主波向き であるため、岸や海底に衝突して、直接河川には、入り込 めなくなっている。また、この海浜流の流れから、図の上 部分の砂が河口内に移動しているのではないかと推測さ れる。

5.4 地形変化

図 5 に造波開始から 2 時間、4 時間、6 時間、8 時間、 10 時間後の河口部周辺の海底地形変化を図化したものを それぞれ示す。河口の先端に少しであるが、砂州の形成が 見られ、時々刻々と砂州が形成していくのがわかる。これ は、波による漂砂と河川からの土砂によって砂州が形成し ていると考えられる。さらに、図の下部の沖側では、砂が 削られ、河口部も削られている。海浜流でも述べたように、 図の上部から下部にかけて流れているために、この流れに より河口上部ではその輸送された底質が砂州を形成し、そ して、河口の下部では浸食の傾向が強くなったのではない かと考えられる。よって、砂州を形成するためには、河口 部すぐ沖側で岸に沿った流れや河口部に入っていく流れ (遡上)によって、河口部の岸や海底の砂などが動き、地形 変化が生じると考えられる。

6. まとめ

実海象波浪である多方向不規則波を造波条件とした準 3次元海浜変形モデルを用いて、河口域の波の伝播や砕波 位置など、表現することができた。さらに、冬季での砂州 形成を再現、計算することができた。河口砂州が形成して いくことを時間的、空間的に把握することができた。

参考文献

James A. Bailard(1891) : An energetics total load sediment transport model for a plane sloping beach, Journal of geophysical research,Vol.86,No.C11.pp.

10938-10954

土木学会、海岸工学委員会、研究現況レビュー小委員会(1994):海岸波動(波・構造物・地盤の相互作用の解析法),pp.72-78

川邉真(2003.3): 実海岸を対象とした低質移動及び海底地 形変化に関する数値実験,長岡技術科学大学大学院工学 研究科修士論文

千受京・出口一郎(1999):現地資料に基づく河口砂州の形状と崩壊に関する考察 砂州の存在を許容した河動
管理計画に向けて ,土木学会,海岸工学論文集,第46巻,pp.651-655

