指導教官 細山田 得三 水工学研究室 柄沢 篤志

1.はじめに

閉鎖性水域は穏やかな水域であることから,これ までに産業や居住,レクリエーションなどの人間活 動に非常に適した場となっている.しかし一方で, このような人間の経済活動は閉鎖性水域の環境に大 きな影響を与えてきた.経済成長と人口の増加に伴 って生活排水や産業排水などが海域に流れ込み,水 質悪化を招くなど,閉鎖性水域は我々人間にとって 利用しやすい場所であるだけに,人為的な影響によ る環境悪化の危険に直面している.

2.研究目的

世界の代表的な広域閉鎖性水域の1つである渤海 は中華人民共和国の東北部に位置する内湾である.

近年,中国はめざましい経済発展をとげているが, その一方でそれに伴い増加してきた工業排水や生活 排水により深刻な水質問題を抱えている.また,過 剰取水により,黄河からの流出水は非常に少なく, 黄河下流域では深刻な水不足が生じている.この問 題を解消するために,中国では,長江から黄河へバ イパスを建設することで長江の年間流量の約3分1 を黄河へ流す「南水北調」が進められているが,黄 河からの流出水が増大すれば,黄河下流域の堆積物 が大量に渤海へ流出し,更なる水質悪化を招くこと が予想される.また,長期的に見ると,その流出水 が東シナ海を経て対馬海流により日本海沿岸域へ到 達し,水環境や水産資源に何らかの影響を及ぼすこ とが予想される.

そこで本研究では,まず渤海の主要な流動機構お よび物質拡散過程を数値計算により把握し,その次 に,黄河の河道内に堆積している底質を調査するこ とで「南水北調」による河川水の状態を把握し,長 期的,広域的な環境変化予測に資することを目的と する.

3.数值解析法

本研究では,準3次元モデル(図1参照)を作成 して,卓越流の数値シミュレーションをおこなった. モデルは,密度差を考慮するために水温,塩分濃度 の保存式から密度を計算するバロクリニックモデ ルを用いた.また,基本式には以下の連続式,運動 方程式を陽的に差分したものを用いた.

連続式

 $\frac{\partial \zeta}{\partial t} + \frac{\partial}{\partial x} \left[(\zeta + h) u \right] + \frac{\partial}{\partial y} \left[(\zeta + h) v \right] - w_s = 0$

運動方程式

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} - fv$$

$$+ \frac{1}{\rho} \frac{\partial P}{\partial x} - A_h \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) - A_v \frac{\partial^2 u}{\partial z^2} = 0$$

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} + fu$$

$$+ \frac{1}{\rho} \frac{\partial P}{\partial y} - A_h \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) - A_v \frac{\partial^2 v}{\partial z^2} = 0$$

$$\cdot \frac{1}{\rho} \frac{\partial P}{\partial z} - g = 0$$

ここで,
$$t$$
:時間 g :重力加速度 ζ :水面の高さ h :水深 ho :海水の密度 f :コリオリ係数

 A_h, A_v :水平,鉛直動粘性係数

4.計算条件

渤海及び黄海を含んだ広域を対象とする数値計 算を行うために,東経116~128度,北緯30~42 度で囲まれる領域を対象とした地形情報はNGDC (U.S National Geophysical Data Center)で提供 される5分刻みの全球情報より当該海域の情報を 利用した.初期水温および初期濃度はJODC

(Japan Oceanographic Data Center)から冬季(2 月)のデータを取得し,それを計算格子に線形補間 したものを用いた.その他の計算条件については表 1に示す.

表1.計算条件

格子間隔	5分(7000mに統一)		
タイムステップ	60秒		
層数	5層,10層		
初期条件	水位,流速共に全域で0		
水平,鉛直動粘性係数	0.1 , $5.0 \times 10^{-4} \text{ m}^2/\text{sec}$		
コリオリカ	f=2 sin		
潮汐周期	43,200 s		

4-1 潮汐流の計算条件

潮汐流の計算では,中野(1940)の作成した調和 定数表から渤海および黄海では半日周潮が卓越し ていることが確認できるので,半日周潮の数値計算 を行った.強制水位は,対象領域内の上海と沖側の 点(北緯31度,東経126度)で結ぶ直線および沖 側の点と木浦で結ぶ直線上で与えた(図2参照). 上海と木浦での水位および遅角は調和定数表より 決定し,沖側の点では,理科年表などで示される半 日周潮の同時潮図および等潮差図より決定した(表 2参照).層厚は,潮汐が長波であり,鉛直方向に 流れの変化があまりみられないことから5層とし た.

表2.3地点での振幅および遅角

地名	振幅	遅角
上海 (E121 [°] 29',N31 [°] 15')	118cm	40 [°]
木浦 (E126 [°] 23',N34 [°] 47')	153cm	60 [°]
東シナ海 (E126 [°] 23', N31 [°] 15')	200cm	270 [°]

4-2 吹送流の計算条件

吹送流計算で使用する風データには,近年客観解 析データが利用されるようになった.海岸工学の分 野では,その代表例として ECMWF (European Center for Medium-range Weather Forecasts)が ある.本研究では,この ECMWF のデータを利用 した.風データの期間は 2003 年 9 月から 2004 年 2 月までの半年間を用い,GrADS (Grid Analysis and Display System)により,対象領域および対 象とする時間の風をバイナリデータとして作成し, テキストデータに変換後,計算格子に合わせて線形 補間したデータを用いた.吹送流では,海面に風応 力が作用することで,表層で流速が大きくなり,下 層の流速は指数曲線的に減少する.そのため,表層 付近では流れを詳細に把握する必要があるため,層 数は表層付近を細かく区切った 10 層とした.

4-3 密度流の計算条件

密度流では、「南水北調」を想定して、長江の流量 データの 1/3 を黄河の河口地点に、2/3 を長江の河口 地点に入力した.ここで、河川の流量データには陸 らによる長江の月ごと流量観測データを用いた.与 え方は、河口付近に存在するデルタ地帯から一様に 流れが発生しているものと想定して、流量を格子幅 と一般的なデルタ地帯の水深である2mで割ること によって流速を算出し、その流速を河口が位置する 地点にコンスタントに与えた.また、河川水と海水 の密度差を考慮するために、黄河および長江の河口 地点で塩分濃度0%をコンスタントに与えた.なお、 水温はJODCのデータを用いた.層数は、潮汐流の みを考慮したので、潮汐流の計算と同様の5層に設 定した.また、与える潮汐の条件については、潮汐 流のみの計算と同様の条件に設定した.

5.計算結果

5-1 精度確認

水位の再現性を確かめるため、中野の調和定数表 による水位と、数値計算によって得られた水位を比 較した.図3は大連での水位変動を比較したグラフ である.水位変動はよく一致しており,本数値モデ ルは実海域の水位変動を再現しているということが 確認できた.

5-2 潮汐流

図4は渤海海峡部での流速が最大時のコンター 図である.また,図5,6は,水位変動が安定した 後に潮汐流の1周期分の流速を平均した潮汐残差 流のベクトル図およびコンター図である.流速最大 時では渤海海峡部で最大0.75 m/sと河川流と同程 度の速い流速が出ており,この対象領域で潮汐流が 卓越していることを示している.しかし,潮汐残差 流では最大流速時に比べて全体的に小さい流速と なっている.沿岸部に比較的速い流れが現れており, 渤海内では反時計回りの大きな循環流が発生して いるが,渤海の中央部では0m/sと非常に停滞性の 強い水域となっている様子がわかる.また,渤海湾 および莱州湾でも,ほとんど潮汐残差流が見られな い.そのため,湾奥部でも非常に停滞性の強い水域 になっていることがわかる.

渤海海峡では,北岸と南岸で比較的速い流速が発 生している.また,図6では,この速い流れが北岸 で渤海に流入方向の西向き流れ,南岸で渤海から流 出方向の東向き流れであることを確認できる.これ は,この渤海海峡で黄海と渤海の海水交換が行われ ており,北部から流入した海水が渤海の沿岸部に沿 って反時計回りに循環し,その後渤海海峡南岸から 流出するという大きな水平循環流がこの海域で生 成されていることを示している.

図7は拡散計算を開始してから1年後の濃度分 布である.初期濃度は,潮汐による水位変動が安定 してから,渤海海峡を境界として渤海側を1.0,黄 海側を0.0として与えた.この図では,渤海と黄海 の海水が渤海海峡の北側で黄海から渤海に流入,南 側で渤海から黄海に流出の方向で交換されている ことを示している.また,渤海の海水は一年で山東 半島までしか流出しておらず,潮汐流のみでは海水 交換は非常にゆっくりとした速度でしか行われて いないということがいえる.

5-3 吹送流

図8はECMWFより購入した2月の渤海湾上空 10mでの風向頻度を示したものである.今回対象 としている渤海では,季節風の影響により冬季には 図8のように北西風や北風が卓越しており,夏季に は南風が卓越している.そこで,この3方向の風が 海水交換に与える影響について検証を行った.

図9は3方向と2月の実データの風を20日間連 吹させたときの平均濃度の時間変動を表したもの である.この図では冬季に卓越する北風や北西風が 南風に比べ海水交換を促進させる働きがあること を示していることから,夏季よりも冬季の吹送流が 海水交換を促進するということが確認できる.

次に ECMWF の実データの 2 月分を入力して計 算を行った.図 10 は 2 月に発生した吹送流の水深 16.25~28.75 m にあたる表層から 5 層目での平均 流れをベクトル図で表したものである.また,図 11,12 は表層でのベクトルおよびコンター図であ る.図 10 と図 11 を比較してみると,渤海内で流向 が異なっていることがわかる.このことより,吹送 流では鉛直方向に海水交換が行われていると考え られる.図 12 では,吹送流は渤海中央部で比較的 強い流れが生成されており,卓越風向の影響によっ て渤海海峡南側でも潮汐残差流の場合の約二倍程 度の流速がでている.これは,水平方向にも海水交 換が行われていることを示しており,吹送流では鉛 直および水平方向の広い範囲で海水交換が行われ ていると考えられる.

図 13 は, 2003 年 9 月から 2 月までの風データ を入力した計算結果で, 2 月 29 日での濃度分布を 示している.この図では,潮汐残差流に比べて濃度 が広い範囲で一様に低下していることから,前述し たように,吹送流は潮汐流よりも広い範囲にわたっ て海水交換を促進する流れであると考えられる.

5-4 卓越流の比較

潮汐流と吹送流の流動機構が海水交換に与える 影響を定量的に把握するために,渤海内の平均濃度 の時間変動を求めた.平均濃度は,拡散計算を行う 際に初期濃度1.0を与えた全ての地点での濃度を加 算した値をその全格子数で除した値を用いた. 図 14 は,その平均濃度の時間変動を日単位で表した 図である.吹送流では平均濃度が上がる箇所も見ら れるが,全体的に線形に低下している.また,潮汐 流では約半年で 0.87 程度まで下がっているのに対 し,吹送流では 0.76 程度まで下がっている.この 結果は,潮汐流よりも吹送流のほうが,渤海内の海 水交換を促進する働きが 2 倍程度強いということ を示しており,このことから,対象領域内では潮汐 流よりも吹送流 が海水交換を促進していることが 確認できた.

5-5 密度流

「南水北調」を想定して,河川水の流入を考慮し た潮汐流の数値シミュレーションを行った 図15, 16 は,潮汐残差流をベクトルおよびコンター図で 示したものである.図15と図6を比較すると,河 川水を考慮した場合は,考慮しない場合とほぼ同じ 流向を示している.しかし,図16と図7を比較す ると,河川水を考慮した場合は,考慮なしに比べ渤 海南部の流速が全体的に速くなっている.これは, 新たに河川からの流入水が増えることによって渤 海内の水量が増し,海水交換で渤海から流出方向に あたる南側の流れが強まったためであると考えら れる,図17は,計算開始から1年後の渤海の海水 |濃度分布を示したものであるが,図7と比較しても, 明らかに渤海南部からの海水流出が早まっている ことが確認できる.これより,河川水の流入は渤海 の海水流出を早める働きをすると考えられる.

図 18 は黄河および長江の河口地点に濃度 1.0 を コンスタントに与え,拡散計算を行うことによって 計算開始から一年後の河川水の広がりを濃度分布 で表したものである.河川水は莱州湾に大量に流れ 込み,徐々に渤海海峡の南部を通って黄海に流れ出 している.この結果から,「南水北調」による黄河 からの流入水が底質の土砂を大量に含んだ濁水で あると考えると,莱州湾を中心とした渤海南部の水 域で更なる水質悪化が予想される.

6. 黄河の底質の粒度試験結果

黄河河道内に堆積している土砂を調査すること は,海水交換機構解明後の粒子追跡シミュレーショ ンを行う上でも極めて重要である.そこで,本研究 ではこの底部にある土砂(底質)を調査することに より,その粒径や粒度分布を調べた.試料は2002 年9月中旬及び12月下旬に採取されたもので,採 取地点は,黄河河口より600km上流に位置する黄河 下流域の河南省鄭州市および1500kmの中流域の甘 斎省蘭州市である.調査では,底質の粒度試験を一 つの資料に対して3回行い,その平均値を取った. 図19,20は,その底質の粒度試験結果である.

図から,60%粒径はそれぞれ0.19 mm,0.14 mmと なっている.「汽水域の河川環境の捉え方に関する 検討会」の報告によると,日本の代表的な一級河川 の底質 60%粒径(河口付近)はおよそ0.2 mm~5 mm 程度となっており,この値と比較しても,黄河の底 質粒径は非常に小さいことがわかる.これは,砂以 下(0.075 mm以下)の含有率を見ても明らかである. 一般に,掃流砂量は流速に比例し,平均粒径に反比 例することが知られている.黄河の底質は非常に粒 径が小さく,また「南水北調」によって黄河の河川 水の流速が増大することで,掃流砂量は大きな値と なる.そのため,「南水北調」による黄河からの流 入水は,黄河河道内に堆積している底質を大量に含 んだ濁水になることが予想される.

7.まとめ

渤海では,潮汐流および吹送流が海水交換に寄与 していた.潮汐流は渤海内で反時計回りの水平循環 流を形成し,吹送流は鉛直方向と水平方向に広範囲 で海水交換を行っていた.吹送流による海水交換は, 潮汐によるものよりも約2倍程度早く,吹送流は潮 汐流よりも海水交換に与える影響が大きいという ことが明らかになった.特に風向は大きく海水交換 に関与しており,冬季に吹く風が最も海水交換を促 進していた.そのため,冬季の吹送流が海水交換を 最も促進させる流れであることが明らかになった.

黄河の底質の粒度試験結果より,「南水北調」に ともなう黄河からの流入水は濁水になると予想さ れる.また,「南水北調」で渤海からの流出水が増 大することにより,渤海の海水が流出する速度は現 在よりも速くなることが確かめられた.吹送流を考 慮した場合,その速度はさらに速くなると予想され る.このことから,今後は日本海沿岸海域を含めた 広い範囲で海流および吹送流を含めた検討が望ま れる.

参考文献

- 堀江 毅(1980):沿岸海域の水の流れと物質の拡散に関する水理学的研究,港研報告,360巻,pp.102-105.
- 犬飼直之,早川典生(2001):渤海の海水交換機構に関する研究,海岸工学論文集,第48巻,pp.1046-1050.
- 山中亮一,志水克成,中辻啓二(2004):大規模閉鎖性水域の 渤海における流動構造の季節変動特性,海岸工学論文集, 第51巻,pp.321-325.
- 山中亮-(2002):メソスケールの気象擾乱が閉鎖性内湾の流 動・密度構造に及ぼす影響に関する研究,大阪大学工学 研究科博士論文.

宇野木早苗(1993):沿岸の海洋物理学,東海大学出版会.

- 柳哲雄(1989):沿岸海洋学,恒星社厚生閣.
- 中野猿人(1940):潮汐学,生産技術センター新社.
- 陸旻皎,本田諭(2000):総合的な河道追跡モデルの開発とその応用,土木学会水工学論文集,第45巻,pp.133-138.
- Inukai , N . (2001) :" Water exchange of the Bohai sea and Dalian Bay due to tidal flow and wind-driven flow ", Asian and Pacific Coastal Engineering 2001, Vol.1, pp. 325-333.