広い温度範囲にわたる自由体積理論に基づく ソーダ石灰ガラスの粘性流動機構

環境材料科学研究室 諏訪貴洋

指導教官 松下和正

【緒言】

近年、光ファイバーや映像機器に使用 されるガラス製品に求められる技術は非 常に高くなっている。ガラスを溶融し、 成形する上でガラス融液の物性は重要な 因子であり、精確な測定が必要である。 また、電子機器などに使用するガラスに おいては、わずかな歪が品質の劣化や性 能の低下を招くため、ガラス転移温度 (Tg)以下の粘性流動を把握することが必 要である。しかしながら、高温での測定 は非常に困難であり、ガラス転移温度 (Tg)以下の温度領域における粘度測定は 変形がわずかであり、長時間を要する。

これまで珪酸塩ガラスの密度、粘度を 室温から高温(約1500)までの温 度領域において測定し、粘性流動につい て自由体積理論に基づき検討されており、 粘性流動は自由体積の存在により生じる ことを確認している。さらに一般的に用 いられる液相温度以上からガラス転移温 度までの広い温度範囲の粘度を表す式 (Fulcher 式)では、これまで適応不可能で あったガラス転移温度よりもはるかに低 い温度までの粘度の温度依存性を、自由 体積理論に基づく式(Doolittle 式)で表す ことができ、実験値と非常に良く対応し たと報告されている^[1]。本研究では2価 の カ チ オ ン を 置 換 し た 珪 酸 塩 ガ ラ ス $(20Na_2O \cdot 10RO \cdot 70SiO_2)$ (R:Ca,Mg, Ba;mol%)の密度、粘度測定を行い、得ら れたデータを自由体積理論に基づき解析 し、粘性流動機構の解明を目的とした。

【実験方法】

ガラスサンプルは出発原料として SiO₂、 Na₂CO₃、CaCO₃、MgCO₃、BaCO₃を用い、 三成分珪酸塩ガラス、20Na₂O・10RO・ 70SiO₂ (R:Ca,Mg,Ba;mol%) を調製した。 白金坩堝を用い電気炉中、大気雰囲気下で 1400℃、3時間溶融を行った。ガラス融液を キャストした後、乳鉢で細かく粉砕し、再度14 00℃で気泡がなくなるまで再溶融を行った。 高温融液の密度、粘度測定にはそれぞれ専 用の白金坩堝に粉砕したガラスサンプルを入 れ測定した。熱機械分析(TMA)用ガラスサン プルは、融液を鉄板上にキャスト後ガラス転 移温度 Tg-5[℃]で1時間熱処理した後、徐 冷したものを用いた。ガラス転移温度以下の 粘度測定はファイバーベンディング法で行い、 測定サンプルは再溶融したガラス融液に石 英ガラス棒の先端を浸し、素早く引き上げ、 マイクロメータで寸法を測定し、直径 100± 5[µm]、長さ 50~70mm になるよう線引き を行ったものを用いた。Fig.1 にファイバーベ ンディング測定法の概略図を示す。ガラスフ ァイバーを半径 Roの石英シリンダーに巻きつ けた状態で目的の温度で熱処理し、炉冷後 のガラスファイバーの曲率半径を測定し粘度 を算出した。

R₀: Radius of cylinder [m]

R_(t): Curvature radius [m]

Fig.1 熱処理前後におけるガラスファイバーの 曲率の変化

【結果および考察】

Fig.2 に 2 価のカチオンを置換したガラス の密度の温度依存性を示す。500℃付近以 下の密度値はアルキメデス法と熱機械分析 (TMA)、1000℃以上の密度値はアルキメデ ス2球法で得た値である。測定結果より、モル 質量の大きい元素が含有する組成ほど密度 が大きくなることが分かった。

Fig.2 に広い温度範囲における粘度の温 度依存性を示す。ガラス転移温度(**T**g)以下 の温度領域における粘度値は、組成の違い による大きな変化が見られず、全ての組成に おいて**Log** η =16付近となった。また、**T**g以 上の広い温度範囲で実験値をよく表すことの できる経験式として Fulcher の式⁽²⁾があり、 以下に示す。

$$Log \eta = A + \frac{B}{T - T_0} \cdots 1)$$

ここで η は粘度 [Pa・s]、T は温度 [K]、 A,B,To は定数である。Fig.2 の破線は Fulcher 式でフィッティングしたものである。

 $20Na_2O \cdot 10RO \cdot 70SiO_2$ (R:Ca,Mg,Ba;mol%)

また、液体の粘度の温度依存性を表すも のに自由体積理論⁽³⁾がある。これは粘性流 動が生じるには自由体積が存在し、流動単 位の隣に一定の大きさの空孔が、熱エネルギ ーにより生成することが必要であり、温度によ る粘度変化は自由体積の熱膨張に起因する と定義している。これは粘度が自由体積ととも に変化することを表し、次の関係式 (Doolittle式)が成り立つ。

$$\operatorname{Log} \eta = A + \frac{BV_0}{V - V_0} = A + \frac{BV_0}{V_f} \cdots 2)$$

ここでA,Bは定数、Vは体積[m³]、V。は占有 体積[m³]、自由体積 V_f[m³]は V-V。である。 この理論に基づき、体積と粘度の本実験結 果よりA,B,V。を最適化により決定し、フィッテ ィングした結果を Fig.4 に示す。Fig.3 では Tg 以下の温度領域において Fulcher 式の フィッティングが無限に粘度が増加するのに 対し、Doolittle 式でのフィッティングでは粘 性流動の活性化エネルギーが著しく小さくな り、ファイバーベンディング法の実験値と傾向 がよく対応している。

(R:Ca,Mg,Ba;mol%)

Doolittle 式に含まれる定数 B は組成の 化学結合の強さと相関関係があると考えられ ており、理論的に算出した値と、最適化によ って得た定数 B の比較、検討を行った。その 結果を Fig.5 に示す。2 価のカチオンを置換 したガラスをそれぞれ比較すると、化学結合 強度の理論値と最適化し得た定数 B には相 関があり、非常に良く対応することが分かっ た。

また、Doolittle式に含まれる定数 Vo は組 成の占有体積として定義されており、定数 B と同様に理論的に算出した値と最適化によっ て得た定数 Vo の比較、検討を行った。その 結果を Fig.6 に示す。2価のカチオンを置換 したガラスをそれぞれ比較すると、理論値と最 適化し得た定数 Vo は非常に良く対応し、相 関があることが分かった。しかし、両者の値に は僅かの違いがあり、それは次のように考えられる。Fig.6における縦軸の最適化し得た Voは、粘性流動に寄与しない体積分が含まれており、理論的に算出した剛体球のみの体積である横軸の Vo よりも大きくなるためである。

(R:Mg, Ba; mol%)

以上のことから、粘性流動は自由体積に 起因するもので、Doolittle式のガラスへの適 用がより明確になった。本研究では、珪酸塩 ガラスの自由体積理論に基づいた粘性流動 を検討したが、今後さらに多くの系のガラスで 比較、検討することが必要である。

【結論】

- 室温から高温までの密度は分子量の大き い組成ほど高い値を示すことが分かった。
- ② 密度と粘度の測定結果を自由体積理論 に基づく式(Doolittle 式)で解析した。粘 度と温度の関数として用いられる Fulcher 式は、ガラス転移温度(Tg)以下 の粘度が無限大になり、実験値と大きくず れるのに対し、粘度を体積のみの関数で 示す Doolittle 式では、液相温度以上からガラス転移温度(Tg)までの広い温度範 囲の粘度を表すことができた。
- ③ Doolittle 式で最適化し得た定数 B は、 ガラス組成中のイオンから求められる平均 化学結合強度と相関関係があり、組成依 存が見られた。
- ④ 定数 Vo はガラス組成中のイオンを剛体 球と仮定した時の理論値と相関関係があ り、組成依存が見られた。

【参考文献】

- [1] 金田武幸:修士論文、長岡技術科学大学 (2004)
- [2] G.A.Fulchr : J.Am.Cera, Soc.8, 339 (1925)
- [3] A.K.Doolittle: J.Appl.Phys. ,22,1471 (1951)