寒冷乾燥地域に適応可能な土壌水・熱輸送モデルの開発について

水文気象研究室 土井 洋典

1. 背景

アジア北部において砂漠化が急激に進行し ており、水資源の有効利用および気候システム の解明のために水循環モデルが望まれている。 また、この地域では永久凍土や季節凍土が存在 し、これらの凍結・融解過程が気候変動に大き な影響を与えることが分かっている。これらの 理由から本研究では寒冷乾燥地域に適応可能 な土壌水・熱輸送モデルの開発を行った。

2. モデルの概要

本モデルは土壌の鉛直方向に水・熱輸送を考 える鉛直1次元モデルを開発した。モデルの概 要を図1に示す。

鉛直1次元水・熱輸送モデルは土壌を細かい層 に分割し、各層での水・熱の輸送を計算するモ デルである。鉛直1次元モデルは土壌層上端と 下端において境界条件を与える必要がある。本

モデルでは土壌層上端において熱収支方程式

を解くことによって地表面温度を求めている。

2.1 基礎方程式

本モデルでは、以下に示す式を土壌水・熱輸 送を計算するための基礎方程式として用いた。

$$\frac{\partial \theta}{\partial t} = \frac{\partial}{\partial z} \left(K \frac{\partial \phi}{\partial z} \right) \tag{1}$$

$$\frac{\partial T}{\partial t} = \frac{\lambda}{\rho_s C_s} \frac{\partial^2 T}{\partial z^2} \tag{2}$$

ここで、 θ は含水率、 ϕ は全ポテンシャル (m) ($\phi = \Psi - z$)、zは鉛直方向の深さ (m)、Kは不飽和透水係数 (m·s⁻¹)、 λ は熱伝導率 (W· m⁻¹·K⁻¹)、Tは地温 (K)、 $\rho_s C_s$ は土壌の熱容 量(J·m⁻³·K⁻¹)である。

水輸送の計算に必要な土壌水特性を求める ために以下の式を用いた。

$$K = K_s \left(\frac{\theta}{\theta_{sat}}\right)^{2b+3} \tag{3}$$

$$\Psi = \Psi_b \left(\frac{\theta}{\theta_{sat}}\right)^{-b} \tag{4}$$

ここで、 K_s は飽和透水係数、 Ψ は毛管ポテンシャル、 Ψ_b は空気侵入圧(m)、 θ_{sat} は土壌の空隙率、bは土壌の特性によって異なるパラメータである。また、熱輸送の計算に用いる土壌の熱特性は以下の式で求まる。

$$\rho_s C_s = \rho_m C_m \theta_m + \rho_w C_w \theta_w + \rho_{ice} C_{ice} \theta_{ice} \quad (5)$$

$$\lambda = \frac{\theta_m \xi_m \lambda_m + \theta_w \xi_w \lambda_w + \theta_g \xi_g \lambda_g}{\theta_m \xi_m + \theta_w \xi_w + \theta_g \xi_g} \tag{6}$$

これらの式において、 θ は各要素の体積割合、 ξ は重み係数、 λ は熱伝導率(W·m⁻¹·K⁻¹)で ある。また、添え字m、w、ice およびgは鉱 物、水、氷および空気を示す。式(6)おける 重み係数は式(7)、(8)および(9)により求 められる。

$$\xi_{g} = \frac{2}{3\left[1 + g_{a}\left(\frac{\lambda_{g}}{\lambda_{f}} - 1\right)\right]} + \frac{1}{3\left[1 + g_{c}\left(\frac{\lambda_{g}}{\lambda_{f}} - 1\right)\right]}$$
(7)

$$\xi_{w} = \frac{2}{3\left[1 + g_{a}\left(\frac{\lambda_{w}}{\lambda_{f}} - 1\right)\right]} + \frac{1}{3\left[1 + g_{c}\left(\frac{\lambda_{w}}{\lambda_{f}} - 1\right)\right]}$$
(8)

$$\xi_m = \frac{2}{3\left[1 + g_a\left(\frac{\lambda_m}{\lambda_f} - 1\right)\right]} + \frac{1}{3\left[1 + g_c\left(\frac{\lambda_m}{\lambda_f} - 1\right)\right]}$$
(9)

 g_a および g_c は形状係数であり、 g_c は g_a を決 定することで以下の式により求める。一般的に 鉱質土壌では g_a は約 0.1 であるといわれてい る。

$$g_c = 1 - 2g_a \tag{10}$$

土壌中の水蒸気相の熱伝導率 λ g は次式によって表現できる。

$$\lambda_g = \lambda_a + \frac{L_e \Delta h_r f_w \hat{\rho} D_v}{p - e}$$
(11)

ここで、 λ_a は空気の熱伝導率 ($\mathbf{J} \cdot \mathbf{m}^{\cdot 3} \cdot \mathbf{K}^{\cdot 1}$)、 L_e は水の蒸発散潜熱 ($\mathbf{J} \cdot \mathbf{mol}^{\cdot 1}$)、 Δ は飽和水蒸 気圧曲線の勾配 ($\mathbf{Pa} \cdot \mathbf{K}^{\cdot 1}$)、 h_r は相対湿度、 $\hat{\rho}$ は空気のモル濃度 ($\mathbf{mol} \cdot \mathbf{m}^{\cdot 3}$)、 f_w は流れ係数 である。また、 λ_f は流体の熱伝導率 ($\mathbf{J} \cdot \mathbf{m}^{\cdot 3} \cdot \mathbf{K}^{\cdot 1}$) であり、以下に示す Campbell ら (1994)の式 で求められる。 f_w は Campbell ら (1994) に よって提案されている式を用いた。

$$\lambda_f = \lambda_g + f_w (\lambda_w - \lambda_g) \tag{12}$$

$$f_w = \frac{1}{1 + \left(\frac{\theta}{\theta_0}\right)^{-q}} \tag{13}$$

これらの式において、 θ_0 は土壌中において潜 熱輸送の流れが分断される含水率を規定し、qは流れの分断がどの程度早く生じるかを規定 する定数である。両定数とも粗い土壌ほど一般 的に小さい値をとると言われているが明確な 定義はなく、 θ_0 は約 0.05~0.25、qは約 2~6 の値であると言われている。

2.2 地表面熱収支方程式

本モデルでは、以下に示す熱収支方程式を用いた。

$$R + H_{rain} - \varepsilon \sigma T_s^4 - H - lE + G = F_s \quad (14)$$

Rは入力放射(W・m⁻²)、 H_{rain} は降雨による熱量、 $\epsilon \sigma T_s^4$ は地表面からの長波放射、Hは顕熱、 I Eは潜熱、Gは地中伝導熱である。各項は以

下の式で計算できる。

$$R = S \downarrow (1 - \alpha) + L \downarrow$$
 (15)

$$\frac{P}{(T_{1},T_{2})}$$
(10)

$$H_{rain} = \frac{1}{C_w} (T_a - T_s) \tag{16}$$

$$H = \rho_a C_p C_H U (T_s - T_a) \tag{17}$$

$$lE = \frac{622}{p} \rho_a \iota C_H U \beta(e_{sat} - e) \qquad (18)$$

$$G = \lambda(0) \frac{T_1 - T_s}{dz} \tag{19}$$

$$\varepsilon = \varepsilon_{s} + (\varepsilon_{s} - \varepsilon_{w})\theta(0)$$
 (20)

$$\beta = \left(1 + \frac{C_{H}UF(\theta)}{D_{ATM}}\right)^{-1}$$
(21)

$$F(\theta) = 7 \times 10^{3} (\theta_{sat} - \theta)^{11.2}$$
 (22)

ここで、 α は地表面アルベド、 $S \downarrow$ は下向きの 短波放射量 (W·m⁻²)、下向きの長波放射量 $L \downarrow$ (W·m⁻²)、 ϵ は地表面射出率、 σ はステ ファン・ボルツマン定数 (W·m⁻²·K⁻⁴)、 T_s は 地表面温度 (K) である。また、Pは降雨強度 (mm·s⁻¹)、 T_a は気温 (K)、 ρ_a は乾燥空気の 密度 (kg·m⁻³)、 C_p は定圧比熱 (J·kg⁻¹·K⁻¹)、 *U*は風速 (m·s⁻¹)、 C_H はバルク係数、 β は蒸 発効率,*L*は水の気化の潜熱 (J·kg⁻¹)、 D_{ATW} は 水蒸気の分子拡散係数 (m²·s⁻¹)、*e* は規定高さ での水蒸気圧 (Pa)、 e_{sat} は温度 T_s での飽和水 蒸気圧 (Pa)、pは大気圧 (Pa)、 T_1 - T_s は地表 面と土壤層第1層と温度の差 (K)、 λ (0)は地 表面の熱伝導率、 θ (0) は土壤層最上層にお ける含水率、 $\varepsilon_s \geq \varepsilon_w$ は土と水の射出率で、そ れぞれ 0.95 と 0.99 とした。

2.3 土壌中での蒸発・凝結

本モデルでは土壌層内からの蒸発量も考慮 している。土壌層内においては、大気の湿度が 非常に低い場合においても深さ 0.05m 以上では 湿度が 100%に近いことが報告されている。そこ で、本研究では深さ 0~0.05m の土壌における 蒸発のみを考慮した。蒸発量 E_{soil} (kg·m⁻¹·s⁻¹) は以下の式により求める。

$$E_{soil} = \rho D_{ATM} \frac{q_{sal}(T) - q}{0.02F(\theta)}$$
(23)

ここで、 q_{sat} (T) は温度 T に対する飽和比湿、 qは土壌内における大きな間隙内での比湿、 $F(\theta)$ は土壌間隙の奥から地表面までの水蒸 気の流れに対する距離を表すパラメータであ る。この式において q_{sat} (T) より qが大きく なる場合には E_{soil} は凝結量となり、土壌水分が 増加する。

2.4 計算手順

本モデルでは以下の手順で計算を行っている。

- 入力値として各層の深さ、土壌特性(K_s、
 𝖤_b、b)、初期の含水率、地温プロファイル を与える。
- 2. 地表面熱収支方程式を解き、初期条件と気 象データから地表面温度を求める。
- 3. 熱輸送の基礎方程式を計算し、各計算ノー

ドの代表する土壌内の水の相変化を考慮 し、新しい温度プロファイルを計算する。

- 更新された温度プロファイルを用いて、相変化が起こるかどうかを判定する。相変化を伴う場合は土壌層の温度変化経路を考慮し、地温、含水率および含氷率を更新する。
- 5. 凍結が発生した場合に、土壌間隙率を超え る液体水を下層へ落とす。
- 6. 水輸送の基礎方程式を計算し、含水率を計 算する。

3. 対象地点

本研究ではモンゴルの東部 Kherlen 川流域 (図 2)を今回の対象領域とした。この流域は 2002年より行われている RAISE project によ り得られた種々の気象・水文データが利用可能 である。今回は当該流域内に設置された気象観 測地点の中から Kherlen bayan Ulaan 地点を 選び、この地点に対し今回開発したモデルを適 用する。

図 2. 研究対象地点

4. モデルの適用

4.1 対象期間

本研究では以下の3期間を対象期間としてモ デルを用いた解析を行った。計算結果と観測結 果の比較によってモデルの有効性を検証する。

		表 1.	対象期間	
	年度	季節	開始日	終了日
_	2003	夏季	8月17日	8月31日
		秋季	10月1日	10月31日
_	2004	夏季	8月1日	8月31日

4.2 土壌の初期条件

水輸送を考える上で、飽和透水係数と飽和含 水率を知る必要がある。本対象地点において、 0~0.05m、0.1~0.15m、0.25~0.3m、0.5~ 0.55m、0.8~0.85mおよび1~1.05mの深さで 飽和透水係数および飽和含水率が測定されて いる。図3に飽和含水率の鉛直プロファイルお よび飽和透水係数の鉛直プロファイルを示す。

図 3. 対象地域の初期条件

4.3 土壌層の分割

本研究では、図 4 に示すように土壌層を 50 層に分割した。この土壌層において 0、0.05、 0,1、0.2、0.3、0.5、0.7 および 1.0mの深さ で地温と含水率の観測値と計算値を比較する ことでモデルの検証を行う。

図4. 本研究における土壌層の分割

4.4 使用データ

本モデルの入力値として気温、地表面温度、 風速、相対湿度、下向き短波放射、上向き短波 放射、下向き長波放射、上向き長波放射、大気 圧および降雨を用い、地温および土壌含水率を 初期条件として与え計算を行い、観測値との比較を行う。本研究で用いる観測データの概要は以下の表に示す。観測データはすべて各サンプリング間隔で測定された値を 30 分間ごとに平均し、記録している。また、図 5、6 および 7 に各対象期間の地温および含水率の初期条件を示す。

表 2. 観測データの概要

観測項目	単位	観測高さ(m)	サンプリング間隔	記録間隔
下向き短波放射	W∙m ⁻²	2.5	5sec	30min
上向き短波放射	W∙m ⁻²	2.5	5sec	30min
下向き長波放射	W∙m ⁻²	2.5	5sec	30min
上向き長波放射	W∙m ⁻²	2.5	5sec	30min
地表面温度	°C	0	5sec	30min
気温	°C	3	5sec	30min
風速	m•s ⁻¹	3	10Hz	30min
相対湿度	%	3	5sec	30min
大気圧	hPa	0	30min	30min
降雨	mm	0	30min	30min
地温	°C	-0.05	10sec	30min
地温	°C	-0.1	10sec	30min
地温	°C	-0.2	10sec	30min
地温	°C	-0.3	10sec	30min
地温	°C	-0.5	10sec	30min
地温	°C	-0.7	10sec	30min
地温	°C	-1	10sec	30min
地温	°C	-1.5	10sec	30min
体積含水率	m ³ •m ⁻³	-0.05	10sec	30min
体積含水率	m ³ •m ⁻³	-0.1	10sec	30min
体積含水率	m ³ •m ⁻³	-0.2	10sec	30min
体積含水率	m ³ •m ⁻³	-0.3	10sec	30min
体積含水率	m ³ •m ⁻³	-0.5	10sec	30min
体積含水率	m ³ •m ⁻³	-0.7	10sec	30min
体積含水率	m ³ •m ⁻³	-1	10sec	30min
体積含水率	m ³ ·m ⁻³	-1.5	10sec	30min

4.5 パラメータ

モデルによる計算を行う上でパラメータを 与える必要がある。表3に計算に用いたパラメ ータを示す。

	Prof Hight / W / I		,
要素	パラメータ		
放射収支	アルベド	α	0.2
降雨による熱量	水の比熱	Cw	4181.6 [J∙kg ⁻¹ •K ⁻¹]
顕熱·潜熱	バルク係数	C _H	0.005
	蒸発効率	β	0.1
	水の気化の潜熱	L	$2.5 \times 10^{6} [J \cdot kg^{-1}]$
土壌の体積熱容量	水の密度	ρ _w	0.9982 × 10 ³ [kg•m ⁻³]
	氷の密度	ρ_{ice}	0.917×10 ³ [kg•m ⁻³]
	氷の比熱	Cice	2000 [J•kg ⁻¹ •K ⁻¹]
土壌の熱伝導率	水の熱伝導率	λw	0.57 [W∙m ⁻¹ ∙K ⁻¹]
	氷の熱伝導率	λ_{ice}	2.24 [W∙m ⁻¹ •K ⁻¹]
	乾燥空気の熱伝導率	λa	0.025 [W•m ⁻¹ •K ⁻¹]
	水の蒸発散潜熱	L	44100 [J∙mol ⁻¹]
	飽和水蒸気圧曲線の勾配	Δ	145 [Pa∙K ⁻¹]
	空気のモル濃度	ρ	41.4 [mol•m ⁻³]
	土壌の水蒸気拡散係数	Dv	2.42 × 10 ^{−5} [m•s ^{−1}]
土壌の水の蒸発	水蒸気の分子拡散係数	D _{ATM}	2.54×10 ⁻⁵ [m•s ⁻¹]

表 3. 計算に用いたパラメータ

また、熱伝導率の計算に必要なパラメータは Force-Restore 法を用いて決定した。表4 にパ ラメータを示す。

表 4. 熱伝導率の重みパラメータ

深さ(m)	q	θ_{0}	g a	λm
0~0.1	4	0.2	0.12	2.5
0.1~0.2	2	0.05	0.1	4
0.2~0.3	2	0.03	0.08	8
0.3~0.5	2	0.1	0.15	4
0.5~	2	0.1	0.1	6

5. モデルの検証

モデルを用いた計算結果と観測結果の比較 によりモデルの検証を行う。2003年夏季にお ける深さ 0.1、0.2、0.3、0.5、0.7 および 1.0m での地温の変化を図8に示す。また、図9に深 さ 0.05、0.1 および 0.2m での含水率の変化を 示す。

8/25

0

0.5

0.2

0.1

0

8/17

(Em 0.4 (m3/m3) 0.3

体積含水率(

8/17

8/19

8/19

8/21

8/21

8/23

8/23

8/25

0.2m

8/27

8/27

8/29

- calculation (0.2m)

8/29

- rainfall

8 8 降雨強度(r

10

0

2

4

6 降雨強度

8

10

(mm/30sec)

8/31

8/31

次に 2003 年秋季における地温および含水率の 変化を図 10 および 11 に示す。

図 10.2003 年秋季における地温の計算値と観測値

熱輸送については観測結果を良く表現でき ているが、比較的深い層では観測結果と計算結 果に少し差が見られた。これは本研究で提案し た Force-Restore 法による熱伝導率の推定方法 では深い層のパラメータが正確に表現できな かったことが考えられる。また、秋季に凍結が 起こった場合の熱伝導率が大きくなっている。 水輸送については無降雨状態での含水率の低 下がモデルでは表現できていないが、降雨に対 する反応および土壌水の凍結が表現できてい る。

6. まとめ

本研究により寒冷乾燥地域に適応可能な土 壌水・熱輸送モデルが開発できた。本モデルで は積雪がある場合に雪面と地表面との熱収支 を考慮していないため、積雪融雪モデルとカッ プリングさせることが今後の課題である。

7. 参考文献

近藤純正:水環境の気象学 -地表面の水収支・ 熱収支-,朝倉書店、1994