吊構造の形状決定と構造解析法に関する研究

建設構造研究室 Dang Tung Dang 指 導 教 官 岩崎 英治 長井 正嗣

1 序 論

近年,明石海峡大橋や多々羅大橋などのような 長大な吊橋や斜張橋を実現する上でケーブル部材 が主要な役割を果たしたことは言うまでもない. しかし,ケーブル構造では荷重が作用するまでそ の形状が確定しないという他の構造要素に比べて 大きく異なる性質を持っているため,所定の荷重 状態での形状決定が重要な問題になる.通常の変 位法に基づいた解析を行う場合には工夫が必要で ある.

ケーブル部材は圧縮荷重に抵抗できないため, 自重や初期張力が作用して,はじめて形状が決ま るため,所定の形状を実現するには座標,部材長 などを決める必要がある.これは形状決定の問題 と呼ばれ,通常は構造解析とは別の手法を用いて 解決される.本研究では滑車部に滑りを起こさせ る力を考慮し,梁部材にケーブル部材が滑車を介 して接続される場合に滑車の接続されている節点 の変位が既定の変位となるようなケーブルプレス トレスの決定方法を導入する方法を提案している. また,ケーブル軸力の既定の方向成分が等しくな る条件をラグランジュの未定定数法により,構造 全体の全ポテンシャルネルギー式に含めることで, 形状決定の問題を解くことができることを示す.

2 ケーブル要素

滑車を含んだケーブル構造では、滑車部でのケー ブルの滑りにより隣接したケーブル要素の部材長 は大きく変化する.このとき、滑り量はケーブル 要素長により制限されることとなる.このため、 ケーブル部材を少ない要素で表現する必要がある. そこで、要素内での平衡方程式を自動的に満足し たケーブル要素を用いる¹¹⁾.この要素の平衡状態 は、次の汎関数の停留条件として得られる.

$$\Pi_C = \int_0^l \left\{ -\frac{\Delta N^2}{2EA} + \left[(F_x + \Delta F_x) - (N + \Delta N) \right] \right\} dt$$

図-1 分力が等しくなる様な滑車を有するケーブル

+
$$\left[\left\{\left(\boldsymbol{N} + \Delta \boldsymbol{N}\right) - n_x(\boldsymbol{Q} + \Delta \boldsymbol{Q})\right\}^T \Delta \boldsymbol{u}\right]_0^l$$
 (1)

ここで、 $(N + \Delta N)$ は軸力ベクトルであり、等分 布荷重 $(q + \Delta q)$ によるケーブル要素の平衡方程 式 $(N + \Delta N)_{,x} = -(q + \Delta q)$ を満足した次式を 用いる.

$$(\mathbf{N} + \Delta \mathbf{N}) = (\mathbf{c} + \Delta \mathbf{c}) - \int_0^x (\mathbf{q} + \Delta \mathbf{q}) dx \quad (2)$$

なお、式中の $(\mathbf{Q} + \Delta \mathbf{Q})$ は、ケーブル要素端に 作用した集中荷重を表している.また、増分前後 のケーブルの単位接線ベクトルをそれぞれ \mathbf{e}, \mathbf{e}^* と表すと、 $(N + \Delta N) = \mathbf{e}^{*T}(\mathbf{N} + \Delta \mathbf{N}), (F_x + \Delta F_x) = \mathbf{e}^T(\mathbf{N} + \Delta \mathbf{N}).$ $\mathbf{e} = \mathbf{N}/|\mathbf{N}|, \mathbf{e}^* = (\mathbf{N} + \Delta \mathbf{N})/|\mathbf{N} + \Delta \mathbf{N}|$

この汎関数 Π_C において, 独立な変分量は, 積 分定数 Δc と両端の変位 $\Delta u(0)$ と $\Delta u(l)$ である. また, 要素内部でも変位分布を仮定していないた め上式の汎関数の停留条件を正確に求められれば, 少ない自由度で非常にたわんだケーブルの解析も 行える.

3 分力が等しくなる様な滑車を有するケー ブル

図1のように、ケーブル (h), (i), (j) が節点 I, J に取り付けられた滑車を介して接続されたケーブ x ルの系を考える。各滑車では、ケーブル軸力の単 位ベクトル n_I や n_J 方向成分が等しくなるものと

図-2 滑車部でケーブルに力が作用する場合

する.この条件を汎関数に含めると,滑車を有す るケーブルの汎関数は次のように表される.

$$\Pi_{C} = \Pi_{C}^{(h)} + \Pi_{C}^{(i)} + \Pi_{C}^{(j)} + \Delta \tilde{u}_{I} \boldsymbol{n}_{I}^{T} \{ (\boldsymbol{N}_{I}^{(h)} + \Delta \boldsymbol{N}_{I}^{(h)}) - (\boldsymbol{N}_{I}^{(i)} + \Delta \boldsymbol{N}_{I}^{(i)}) \} + \Delta \tilde{u}_{J} \boldsymbol{n}_{J}^{T} \{ (\boldsymbol{N}_{J}^{(i)} + \Delta \boldsymbol{N}_{J}^{(i)}) - (\boldsymbol{N}_{J}^{(j)} + \Delta \boldsymbol{N}_{J}^{(j)}) \} (3)$$

ここで、 $\Delta \tilde{u}_I, \Delta \tilde{u}_J$ は、ラグランジュの未定係数で あるが、汎関数が停留したときには、それぞれ滑車 を有する節点 I と J のケーブルのずれ変位を表して いる.この変位は、ケーブルに沿った x 軸方向の変 位を正としている.また、式中の ($N_I^{(h)} + \Delta N_I^{(h)}$) の添え字は、要素 (h) の節点 I での軸力を表して いる.

これより,要素の両端に滑車のある一般的な場 合のケーブル要素の汎関数は次のように表される.

$$\widetilde{\Pi}_C = \Pi_C + \left[\Delta \widetilde{u} \boldsymbol{n}^T (\boldsymbol{N} + \Delta \boldsymbol{N})\right]_0^l \qquad (4)$$

4 滑車部でケーブルに力が作用する場合

図 2 のように、ケーブル要素 (i) が節点 I, J に取 り付けられた滑車を介して接続されたケーブルの 系において、滑車部 I, J に滑りを起こさせるよう な力 $T_I + \Delta T_I$ と $T_J + \Delta T_J$ が作用した場合を考 える. この状態を表す汎関数は次のようになる.

$$\widetilde{\Pi}_C = \Pi_C + \left[\Delta \widetilde{u} \{N + \Delta N - n_x (T + \Delta T)\}\right]_0^l$$
(5)

ここで、 n_x はケーブル断面の外向き法線とx軸と の方向余弦を表し、x = 0で $n_x = -1$ 、x = lで $n_x = 1$ となる.

図 4(a) のように節点2の滑車が固定され,ケー ブルに力Tが作用しているケーブルの節点2の平 衡方程式は次のようになる.

$$\delta(\Delta \boldsymbol{u}_2); \quad \boldsymbol{N} - \boldsymbol{R}_2 = \boldsymbol{O} \tag{6a}$$

$$\delta(\Delta \tilde{u}_2) ; \quad N - T = O \tag{6b}$$

(a) 両端が固定されたケーブル

図-3 滑車部でケーブルに力Tが作用した場合

これより、節点2には次のような反力が生じる.

$$\boldsymbol{R}_2 = T\boldsymbol{e} \tag{7}$$

また,図(b)のようにケーブルの両端が梁要素に 接続され,滑車部でケーブルに力*T*が作用して いるケーブルの節点2の平衡方程式は次のように なる.

$$\delta(\Delta \boldsymbol{u}_I); \quad \boldsymbol{N}_c + \boldsymbol{N}_b = \boldsymbol{O} \tag{8a}$$

$$\delta(\Delta \tilde{u}_I); \quad N_c - T = O \tag{8b}$$

ここで、 N_c はケーブルの、 N_b は梁要素の断面力 ベクトルである.これよりこれらの断面力は次の ようになる.

$$\boldsymbol{N}_c = T\boldsymbol{e} , \qquad \boldsymbol{N}_b = -T\boldsymbol{e}$$
 (9)

このように,滑車部でのケーブルに直接作用させる力*T*は,ケーブルのプレストレスに相当している.

5 数值計算例

5.1 斜張橋

5.1.1 解析モデル

図4のような全長508mの対称な3径間連続斜 張橋を解析モデルとして採用する.桁は1室断面 とし、ファンタイプに配置した3段ケーブルで桁 を支持する.ケーブル,桁,塔,それぞれの構造諸

図-4 モデル概要

表-1 構造諸元				
両実の新拓	断面積	断面2次モーメント		
安奈の裡類	A, m^2	I_z, m^4		
ケーブル	0.043			
補剛桁	0.6	1.7		
主塔	0.44	0.9		

表-2 荷重条件			
荷重の種類	大きさ (<i>N</i> /m)		
ケーブルの自重	200		
桁の死荷重	19600		
活荷重	1000		

元は表1に示すように決定したものである.ここ では、桁と主塔は梁要素を用い、ケーブルはケー ブル要素を用いて解析を行う.等間隔に配置した 桁の両端部の境界条件はローラ、主塔の基部の境 界条件はヒンジにする.

桁全体を52分割し、両主塔はそれぞれに12分 割する. 図5の●印の節点は通常の節点であり、 ○印の節点は滑車を有する節点である. 塔には曲 げモーメントが生じないように、塔とケーブルが 接続する節点15,16,17と19,20,21に滑車を 取り付ける.ケーブル軸力の水平成分が等しいと いう制約条件を加える.また中央径間の桁とケー ブルの接続部には死荷重が作用しても、桁がたわ まないように、滑車部にプレストレスが作用する ようなモデル化を行っている.

5.1.2 解析結果

最初,補剛桁の死荷重 19.6kN を等分布荷重と して載荷した. 図7は死荷重を載荷した後の変位 を 1000 倍に拡大した変形図である.滑車による 形状決定を行わなければ,支間中央と塔基部支点 で大きなモーメントが生じるが,本研究で提案し た形状決定法を導入すると,図8から明らかなよ うに断面力分布が均等化することがわかる.

図−5 解析モデル

以上のことから、節点を滑車とすることにより、 形状決定を行えたといえる.ここで、さらに形状 決定後の解析について説明する.まず、形状決定 のために取り付けられた滑車の滑り変位を拘束、 つまり節点を剛結する.その後、ケーブルの自重 と桁の中央径間に活荷重を載荷させる.解析結果 は図8で表される.形状決定が行われていること によって、活荷重に対しても断面力分布は滑らか な曲線を示している.

5.2 吊橋

5.2.1 解析モデル

図9のような中央径間長600mの3径間連続吊橋を解析モデルとして取り扱い,解析を行う.中

図-8変形図

9 挂注土主二

公 一 3 伊坦阳儿				
亜まの毎粒	断面積	断面2次モーメント		
安希の種類	A, m^2	I_z, m^4		
ケーブル	0.25			
補剛桁	0.7	1.8		
主塔	0.65	1.25		

+

表-4 荷重条件		
荷重の種類	大きさ	
初期張力	4000kN	
桁の死荷重	94389N/m	
活荷重	20000N/m	

央径間長は 600m, 側径間長 170m で, ケーブル から鉛直ハンガーを下ろして桁を吊る形式である. ケーブル,桁,塔,それぞれの諸元は**表3**に示す. ここでは,桁と主塔は梁要素を用い,メインケー ブルとハンガーケーブルはケーブル要素を用いて 解析を行う.桁の両端部の境界条件はローラ,主 塔の基部の境界条件はヒンジにする.

節点 22 が固定支持,節点 42 には滑車が取り付けられ,メインケーブルの初期張力を与えるための節点である.桁を 10mの間隔で分割し,両主塔それぞれを 10 分割する.図10の・印の節点は 通常の節点であり、。印の節点は滑車を有する節点である.図11のような制約条件を加えるため, 吊材位置でのメインケーブルの節点に滑車を取りつけ,滑車が水平方向に移動しないようなケーブ ルプレストレスを与える.メインケーブルと主塔に接続される節点 26 と節点 38 に滑車を取り付け, 水平分力が等しくなるような条件を付加する.

5.2.2 解析結果

形状決定を行うため,まず,節点42の滑車部で ケーブルに4000kNの大きなプレストレスを与え る.しかし,変位が小さいため,モデル全体の変 形状態がよく見られない.さらに桁の死荷重を等 分布荷重として4分の1ずつに載荷させる.その 結果,図12に示すように吊材とメインケーブル が交差する滑車が鉛直方向のみに移動したことが 分かる.また,吊材位置での桁の鉛直変位が生じ ないことがわかる.それはケーブルから桁を吊る

図-11 解析モデル

ようにさせるため、それぞれの滑車に強制変位を 付与したからである.本研究で提案した形状決定 法を導入することにより、断面力図から明らかな ように断面力分布が均等化することもわかる.

以上のことから、節点を滑車とすることにより、 構造全体のバランスがとれて、メインケーブル長 や断面力を得られたことにより、形状決定をする ことができたといえる.さらに形状決定後、形状 決定のために取り付けられた滑車を有する節点を 剛結する.その後、桁の中央径間に活荷重を載荷 させる.解析結果は図13、図14で表される.ま た、滑車で構成された吊構造に荷重が作用したと きの形状を基に、剛結吊構造も形状を決めると、 吊構造全体の断面力の不均衡を緩和することがで きるので、このような構造の解析にも、滑車を有 するケーブル要素は有効である.

6 結論

本研究により、以下のような結論を得た.

- 軸力の分力が等しくなるような滑車を有す るケーブル要素を用いたことで、死荷重が 作用したとき、塔に曲げモーメントが生じ ないような形状決定問題を解決できたこと を数値計算により、示した。
- ケーブル要素と梁要素を組み合わせた吊形
 式構造において、ケーブル要素と梁要素を

図-14 滑車を剛結した後の活荷重による変形図

接続する節点にケーブルプレストレスの決 定方法を導入したことにより、吊構造の形 状決定が可能であることを数値計算により 示し、その妥当性と有効性を確認した.

参考文献

- 前田幸雄,林 正,前田研一:サグを考慮したケー ブル部材の計算式,土木学会論文報告集,No.257, pp.123-126,1977.
- 中西 宏,波田凱夫:曲線要素を用いた有限要素 法によるケーブル構造の大変形解析,土木学会論 文報告集,第 318 号, pp.41-50, 1982.
- 謝 旭,伊藤 学,山口広樹: Updated Lagrangian 手法に基づく柔ケーブルの非線形解析,

図-15 桁の断面力

構造工学論文集, Vol.41A, pp.427-434, 1995 年 3 月.

- 林 正, 岩崎英治, 山野長弘, 時 譲太:ハイ アラーキ要素によるケーブル構造の有限変位解 析,土木学会論文報告集, No.668/I-54, pp.207-216, 2001.
- 5) 阿井正博,西岡隆,奥村敏恵:ケーブル構造に関 する一理論解析,土木学会論文報告集,第260号, pp.17-32, 1977.
- 6)後藤茂夫: 柔ケーブル材の接線剛性方程式について、土木学会論文報告集、第270号、pp.41-49、 1978.
- 7) 真柄栄毅,国田二郎,川股重也:混合法によるケーブ ルネットの解析 その (2) 幾何学的非線形問題の厳密 解,日本建築学会論文報告集,第 220 号, pp.35-45, 1974.
- B. M. McDonald and A. H. Peyrot : Analysis of Cable Suspended in Sheaves, J. Struct. Engng., ASCE, Vol.114, No.3, 1988.
- 9) M. Aufaure : A Finite Element of Cable Passing Through a Pulley, *Computers & Structures*, Vol.46, No.5, pp.807-812, 1993.
- 岩崎英治,林 正:修正された変分原理による空間曲線材の有限変位解析,構造工学論文集, Vol.37A, pp.367-380, 1991.

- 岩崎英治,長井正嗣:滑車を有する柔ケーブル構 造に適用可能な有限要素の開発,構造工学論文集, Vol.48A, pp.151-158, 2002.
- 12) 折戸邦明:ケーブル構造の形状決定と構造解析 法に関する研究,長岡技術科学大学大学院修士論 文,2003.2