統計的エネルギー解析法の実橋への適用に関する研究

建設設計工学研究室 田村 嘉教

指導教官 宮木 康幸

1. はじめに

鉄道橋を列車が走行する際に発生する騒音は, 大別すると"走行音"と"固体音(構造物音)" に分けることができる.前者はモータに代表さ れる電車の機器音や車輪がレール上を転がる際 生じる音などを指し,後者はレール部で発生し た振動が枕木を介して床版や縦桁横桁に伝わり、 その振動が原因で生じる音を指す.

本研究では,鉄道橋の特定場所(床版上など) の振動を測定し、そのデータを元に統計的エネ ルギー解析法によって橋梁から発生する固体音 の予測を最終目的としている.

2. 統計的エネルギー解析法の概要

統計的エネルギー解析法(以下 SEA 法と略 称)は,中高周波数域の振動騒音解析において 注目されており,車・船舶・航空・宇宙などあ らゆる分野で適用検討がなされている.

SEA 法では振動,音響をエネルギーという統 一量で表す.解析対象である構造物は FEM に 比べて比較的少数な要素に分割され,その要素 内の損失パワー,要素間の伝達パワー,要素外 からの入力パワーの平衡関係から伝達を計算す る.結果として,ある周波数帯域の振動速度, 音圧が求まる.

図 1 に示したように定常状態における要素 i とjのパワーフローの平衡式は以下のようになしたがって、式(3)の伝達パワーPiiは、 る。

要素
$$i: P_i = P_{di} + P_{ij}$$
 (1)
要素 $j: P_j = P_{dj} + P_{ji}$

ここでPi、Pjは入力パワー、Pdi、Pdjは内部損 失パワー、Pij、Pjiは伝達パワーである。

中心角周波数 、バンド幅 の周波数帯域 内における要素iの内部損失率 i、エネルギー をEiとすると、内部損失パワーPdiは

$$P_{di} = \omega \eta_i E_i \tag{2}$$

また、要素iのモード数をNi、平均モーダルエ ネルギーをEmi 要素iとjとの結合損失率を jjと すると、伝達パワーPijは次式で表される。

$$P_{ij} = -P_{ji} = P_{ij} - P_{ji}'$$

$$P_{ij}' = \omega \eta_{ij} N_i E_{mi}, \quad P_{ji}' = \omega \eta_{ji} N_j E_{mj}$$

$$(3)$$

要素iとjの相反定理から、結合損失率 jjと 言には次の関係が成立する。

$$\eta_{ij}N_i = \eta_{ji}N_j \tag{4}$$

$$P_{ij} = \omega \eta_{ij} N_i \left(E_{mi} - E_{mj} \right) = \omega \eta_{ij} N_i \left(\frac{E_i}{N_i} - \frac{E_j}{N_j} \right)$$

(5)

式(1)は、式(2)と式(5)より式(6)のよ うに書くことができる。

$$P_{i} = \omega \eta_{i} E_{i} + \omega \eta_{ij} N_{i} \left(\frac{E_{i}}{N_{i}} - \frac{E_{j}}{N_{j}} \right)$$

$$P_{j} = \omega \eta_{j} E_{j} + \omega \eta_{ji} N_{j} \left(\frac{E_{j}}{N_{j}} - \frac{E_{i}}{N_{i}} \right)$$
(6)

式(6)からも分かるとおり,モード数や損失 率など SEA パラメータが決まれば,各要素の エネルギーが算出できる.

ここまでの考えから,解析対象構造物をn個 に分割し,各要素についてのパワー平衡式を書 くとn個の方程式が得られ,マトリクスで表す と以下のようになる.

3. 実橋へのアプローチ

本研究では鉄道橋の騒音・振動の測定データ として,北陸新幹線第3千曲川橋梁(全長 248.1m)を中心とした騒音調査データを使用し ている.調査箇所としては,橋梁部の防振対策 桁区間,無対策桁区間,また,隣接する高架部 においては普通スラブ区間,防振スラプ区間で の調査が行われた.なお,各調査箇所では振動 加速度レベルと騒音レベルが計測されている. 無対策桁区間における調査箇所を図2に示す.

図3は無対策桁断面における1/3オクターブバ ンド周波数帯での騒音レベル(1)と振動加速 度レベル(2,3)を表したグラフである.1と 2,3のスペクトルには相関性が有ることから, 電車の走行による振動が床版・縦桁・横桁など に伝わり固体音として放射されていると推測で きる.

図3 調査箇所の騒音レベルと振動加速度レベル

また,図3で示した振動加速度レベルの実測値 は実験機器のSN比の影響で設定レンジから40 ~50dBまでしか信頼性が無い.従って,この 先で実測値を使用する場合は2000Hzまでを対 象として扱うこととする.

4. SEA 解析フローとパラメータ SEA の解析フローを以下に示す.

図 4 SEA 解析フロー

本研究では,防振対策桁,無対策桁,高架部そ れぞれにおいて,数種類要素分割を行い,解析 を行った.図4のパラメータとは,要素のモー ド数,内部損失率,結合損失率,入力パワーで, 以下に示す.

4.1 モード数

モード数は通常 1/3 オクターブバンドなど, 計算周波数帯域に含まれる要素がもつ固有モー ドの数である.平板の場合,以下の計算式から 算出できる.

$$N = \frac{S\omega}{4\pi c_l' k'} \tag{8}$$

ここで,

$$c_l' = c_l \sqrt{1 - \sigma^2} \qquad (9)$$

$$k' = \frac{h}{\sqrt{12}} \tag{10}$$

4.2 内部損失率

内部損失係数はSEAの計算精度に影響を与 える重要なファクターであり,対象となる構造 物内において振動エネルギーが熱エネルギーへ と変換されることによって生じる損失のことで ある¹⁾.構造要素の場合,内部損失係数は解析 的に求めることはできず,実験によって求める ことになるが,正確に求めることは難しい²⁾. 以下に示した式は,板厚1mmで面積が異なる2 種類の鋼板で行われた内部損失係数の実験近似 式である.実験は空中に吊り下げた平板を衝撃 加振して,残響時間から損失係数が求められた. ³⁾本解析では鋼板構造である桁においては式 (11)を,コンクリート構造である床版につい ては参考文献⁴⁾より10⁻²を使って解析を行った.

$$\eta = 0.041 \times f^{-0.7} \tag{11}$$

4.3 結合損失率3)5)

結合損失係数はパワーが要素間を伝達すると きの損失率である.実験的に求めることは難し く,結合が単純な場合は理論的に推定できるが 複雑な構造の場合は実測することとなる.

(a) 実測による推定法

2 要素の場合の結合損失率 _{ij}は次式によっ て推定できる.

$$\eta_{ij} = \frac{\eta_j E_j N_j}{E_i N_j - E_j N_i} \tag{12}$$

(b) 理論的推定法

梁要素及び板要素の結合の場合,結合損失係 数は式(13),(14)より計算できる.この計算 には要素の寸法,材料特性に加えて結合部のエ ネルギー透過率や音響放射率が必要になる.

梁:
$$\eta_{ij} = \frac{c_{gi}\tau_{ij}}{\omega L_i}$$
 (13)

板:
$$\eta_{ij} = \frac{c_{gi}L_c\tau_{ij}}{\pi\omega S_i}$$
 (14)

4.4 入力パワー

普通実験などで求められが,実構造物におい て入カパワーの推定は困難となるため,本解析 では図2で示した2~6の振動加速度レベルを 入力パワーとして計算を行った.

5. 音圧レベルの算出

ここまででモード数や損失率など SEA パラ メータ求められれば各要素のエネルギーが算出 できることを示した.ここでは2乗空間平均速 度,さらに音響出力及び音圧レベルまでの算出 フローを図5で示す.

図5 音圧レベル算出フロー

5.1 要素の2乗空間平均速度

構造要素の場合以下の式によって要素の2乗 空間平均速度を求めることができる.

$$< v^2 > = \frac{E}{M}$$
 (15)

ここでEは要素のエネルギー,Mは要素の質量,<v²>は2乗空間平均速度である.

5.2 音響出力

音響出力とは,単位時間に音源が放射する音波のエネルギーの全方向に関する和で,以下の式で 算出できる.

$$P = \rho c S \sigma < v^2 >$$
 (16)

ここで

 ρc :音響固有インピーダンス

- S:音響放射面積
- σ :音響放射効率
- < v² > : 2 乗空間平均速度

5.3 音響パワーレベル

音響パワーレベルは,音響出力と基準の音響 出力(10⁻¹²)の比の常用対数の10倍を言う. 以下に定義式を示す.

$$PWL = 10\log_{10}\left(\frac{P}{10^{-12}}\right)$$
 (17)

5.4 音圧レベル

点音源からの距離減衰を考慮した音圧レベル 以下の式で算出できる.

$$SPL = PWL - 11 - 20\log_{10} d$$
 (18)

ここで

d:音源と受音点の距離

6. SEA 解析結果

6.1 要素の分割数による解析値の比較

要素分割については,橋梁部無対策桁区間に おいては23要素,59要素.防振対策桁区間に おいては26要素,67要素として解析を行った. なお,分割を行う前に実橋モデルを作成したが, 実橋モデルでは簡略化の為に下横構やリブなど を省略し,床版,縦桁,横桁の構成とした.こ こでは無対策桁区間での解析結果を示す.

図6 無対策桁区間23要素の場合

ここで図6と図7は無対策桁の実測値と解析値 を表しており,図中の1とは実測値を表し,2 及び3はその場所における振動加速度レベルを 入力パワーとしたときの解析値である.

図 6,7 の 2,3 を見るとそれぞれ実測値より 大きな値となっている.これは,入力パワーを 床版全体に与えていることが原因と考えられる. 一方,59 要素の場合は列車が走行する分の床版 に対して入力パワーを与えている.

図7 無対策桁区間 59 要素の場合

図 6 及び図 7 から,要素分割においては 59 要素の方が実測値に近い解析値が得られたことが分かる.ここでは掲載していないが,防振対策桁区間においても要素分割 67 の方が実測値に似た解析結果が得られた.

6.2 入力位置による解析値の比較

ここでは軌道(2,3)もしくは桁(4~6)の 振動加速度レベルを入力パワーにすることによ る解析値の比較を示す.

図9 桁部分の入力パワーを使用した場合

図8及び図9より,桁よりも軌道での振動加速 度レベルを用いる方が実測値に近い解析値を得 られることができた.

6.3 桁の防振対策の有無による解析値の比較

図 10 は防振対策桁における実測値と解析値 を示したものである.無対策桁については図 7 を参照されたい.

図10 防振対策桁区間の場合

図 7 と図 10 から,桁の防振対策の有無によっ て解析値に差が生じないことがわかった.

6.3 橋梁部における実測値と解析値の比較

ここまで行った解析値の比較を踏まえて,橋 梁部無対策桁区間において要素分割数59,入力 位置軌道付近とした場合の解析結果差を図11 に示す.また,高架部防振スラブ区間での実測 値と解析値を図12で示す.

図 11 無対策桁区間における実測値と解析値

図 12 高架部防振スラブ区間における実測値と解析値

7. 研究成果

SEA 解析結果より,橋梁の無対策桁,防振対 策桁区間においては実測値とほぼ一致した解析 値を得ることができた.また,高架においても 比較的実測値と一致した解析結果が得られた. これにより,SEA 法を橋梁及び高架へ適用可能 と言うことができる.

しかし,入力パワーの位置や要素の分割数に よっては解析値が大きく異なるため,SEA 解析 を実橋に適用する際このふたつの条件に注意す る必要がある.

8. 今後の課題

本研究では参考文献などを参考に要素の分割を 行った.しかし,要素の分割方法や入力パワー の与える大きさによって解析結果が変化するた め,要素分割方法の確立が求められる.

参考文献

 1)小泉孝之:SEA 法の基本概念,騒音制御, Vol26,No5,pp293 298(2002)

2)飯田一嘉,大橋 心耳,岡田 健,麦倉 喬 次:現場実務者と設計者のための実用騒音・振 動制御ハンドブック,(2000)

3) 白木万博,: 騒音防止設計とシミュレーション, pp383 422(1982)

4)安田博之:板状模型交差部における曲げ波
 による固体音の統計的エネルギー解析に関する
 研究,日本建築学会計画系論文集,第465号,
 pp1 10(1994)

5) 入江良彦: SEA 法による固体伝搬音解析, 日本音響学会誌,48巻6号,pp433 444(1992)