自由体積理論に基づいたケイ酸塩ガラス融液の粘性流動機構の解明

環境材料科学研究室 金田武幸

指導教官 松下和正

<u>1.緒言</u>

近年、光学材料や精密機器に用いられているニ ューガラスは、高機能、高性能、均質性が要求さ れている。また、溶融温度は1400~1600 と非 常に高い。そのため、ガラス製造時に大量のエネ ルギーを消費するだけでなく、炭酸ガスが多量に 発生することから環境問題と深く関係し、ガラス 製造工程の効率化が求められている。そのために は、ガラス融液の物性を正確に把握することが重 要である。しかしながら、ガラスの基本的な物性 のひとつである密度は、高温での測定が非常に困 難であるため、他の物性に比べ、報告例が極めて 少ない。本研究ではアルキメデス2球法を用いて 種々のケイ酸塩ガラス融液の密度測定を行い、融 液状態における重要な制御因子の一つである粘 度との関係を自由体積理論に基づき検討した。

<u>2.</u>	<u>実験方法</u>	

ガ ラ ス サ ン プ ル は Na₂O-CaO-SiO₂、 Na₂O-K₂O-SiO₂、Na₂O-BaO-SiO₂、Li₂O-SiO₂、 R₂O-SiO₂(R=Na, Li)ガラスとし通常溶融法で作 製した。組成を Table.1 に示す。密度測定は室温 ではアルキメデス法、室温からガラス転移温度 (Tg)までは熱機械分析による熱膨張測定から算出 した。高温ガラス融液の密度はアルキメデス 2 球 法で測定を行った。Fig.1 に測定系を示す。電子 天秤から白金球(13, 10mm)を白金線(0.5mm

)で吊るし、白金坩堝中のガラス融液に沈め 1) 式により密度を算出した。

$$=\frac{B_{13}-B_{10}}{V_{13}-V_{10}} \cdot \cdot \cdot 1)$$

ここで は試料の密度[g/cm³]、B₁₃,B₁₀は13、10 mm 白金球に働く浮力[g]、V₁₃,V₁₀は13、10mm

白金球の体積[cm³]を表している。測定は 1500 から相分離もしくは粘度がおおよそ 10²[Pa・s]までの範囲で行った。

SiO_2	Na ₂ O	CaO	K ₂ O	Li ₂ O	BaO
80	10	10			
70	20	10			
70	15	15			
70	10	20			
60	30	10			
60	20	20			
60	10	30			
50	40	10			
50	25	25			
50	10	40			
70	20		10		
70	15		15		
70	10		20		
70	20				10
70				30	
66.7	33.3				
66.7				33.3	

Table.1 Glass composition in this study (mol%)

Fig.1 Schematic of high temperature density measurement device

<u>3.実験結果</u>

Fig.2 にガラス融液に浸した 13、10mm 白金 球の浮力の温度依存性を示す。低温になるにつれ 測定誤差が大きくなっていることがわかる。これ はガラス融液の粘度が増大したためである。

Fig.3 に xNa₂O - (30-x)CaO - 70SiO₂ ガラスの 室温から 1500 までの密度測定結果を示す。測 定不能な中間領域は多項式近似を用いて内挿を 行った。CaO 含有量の増加とともに密度、Tg が 低くなっている。xNa₂O - (40-x)CaO - 60SiO₂ ガ ラスにおいても同様の傾向が得られた。これは 2 価のイオンである Ca イオンは Na に比べ熱的に 安定で単結合強度が強く、より密に packing され るためである。

Fig.3 Temperature dependence of density in xNa_2O - (30-x)CaO - $70SiO_2$ glass

また Fig.4 に R₂O-2SiO₂(R=Na, Li) ガラスの密 度の温度依存性を示す。R=Li の方が Tg は高く、 熱膨張係数は小さい値となった。これは Li イオ ンの方が Na イオンより単結合強度が強いので熱 的に安定であるためと考えられる。

R₂O-2SiO₂(R=Na, Li) glass

<u>4.考察</u>

<u>4.1 Fragility と熱膨張係数の関係</u>

Angell は広い温度範囲にわたってアレニウ ス的性質を示すものを strong とし、顕著な曲率 を示すものを fragile と表現した。この変化を Tg 付近の粘性流動の活性化エネルギーにより fragility の係数 m として定義した[1],[2]。

$$m = \left| \frac{d \log}{d \left(T_g / T \right)} \right|_{T = T_g} = \frac{E}{2.3RT_g} \quad \cdot \quad \cdot \quad 2)$$

この場合、m が小さくなる程 strong な液体であ る。以前本研究室で測定した粘度の値[3]から算出 した係数 m と本研究で測定した Tg 付近の熱膨張 係数の関係を Fig.5 に示す。SiO₂に対しアルカリ を置換していくと曲率が大きくなることは既に 知られているが、同含有量の SiO₂の Na₂O-CaO-SiO₂ガラス組成において CaO 含有量 が多いガラス程 fragile な液体であり、熱膨張係 数も大きいということがわかった。これは自由体 積と粘度が深く関わっていることを示している。

Fig.5 Comparison of fragility, m and volume expansion coefficient for Soda-Lime-Glass

4.2 自由体積理論に基づいた粘度の検討

一般的に粘度の温度依存性は自由体積の増加に よるものと言われている。Doolittleの自由体積理論 [4]によれば、次の関係式が成り立つ。

$$\log = A + \frac{BV_0}{V_f} \quad \cdots 3)$$

ここで は粘度[Pa s]、A,Bは定数、Vは体積[m³]、 V₀は占有体積[m³]、自由体積はV_f [m³] =V-V₀であ る。本研究では体積と粘度の測定結果より、定数 A、 B、V₀を V₀/V_f と粘度が直線関係になるように決定し た(Fig.6)。

直線の傾きは3)式の定数Bを、切片が定数Aを表し ている。最適化した定数を Table.2 に示す。本研究 では特に定数 B とV₀に着目し考察を行った。

SiO_2	Na ₂ O	CaO	Α	В	V ₀
70	20	10	-11.14	0.833	0.369
70	15	15	-14.60	1.366	0.347
70	10	20	-16.14	1.812	0.332
60	30	10	-6.859	0.213	0.386
60	20	20	-3.453	0.111	0.379
60	10	30	-4.377	0.193	0.365

Table.2 Fitting constant for Soda-Lime-Glass

定数 B は体積変化と粘度変化を表している組 成固有の定数であり、体積変化以外に粘性流動に 寄与する因子である。そこで化学結合に関係して いる定数と考え、ガラス組成から単結合強度の平 均値を求め比較を行ったものを Fig.7 に示す。

定数 B は化学結合と相関があることがわかった。つぎに V₀ は粘性流動に必要な自由体積が皆 無な体積を表している。そこでイオン半径から求 めた占有体積と最適化して求めた V₀ を比較した ものを Fig.8 に示す。イオン半径の合計が大きい Na₂O 含有量が多いガラス程、定数 V₀の値も大き く、相関があることがわかる。

Fig.8 Comparison of constant V_0 and Ion volume in xNa₂O - (30-x)CaO - 70SiO₂ glass

<u>4.3 Doolittle 式の適応温度範囲</u>

粘度の測定値はFulcherの粘度式による最適化 が一般的だが、Tg以下の粘度には適応できない。 しかし Doolittle 式は体積と粘度の関係式なので Tg以下の粘度にも適応できると考え3)式とTg以 下の比容の測定結果から Tg以下の粘度を計算した。 ファイバーベンディング法によって測定された R₂O-2SiO₂(R=Na, Li)ガラスのTg以下での粘度[5] と計算で求めた粘度との比較を行ったものを Fig.9 ~10 に示す。200~1200 程度の非常に広範囲に 渡り実験値とよく対応した。このことからTg 付近にお ける粘度の大幅な変化は、体積の屈曲に由来するも のであり、自由体積の増分が粘性流動を引き起こし ていると考えられる。

Fig.9 Comparison of Doolittle and Fulcher equation of $Na_2O-2SiO_2$ glass

Fig.10 Comparison of Doolittle and Fulcher equation of Li₂O-2SiO₂ glass

<u>5 結論</u>

本研究では種々のケイ酸塩ガラス融液の密度 測定を行い、粘性流動機構と自由体積の関係につ いて検討した結果以下のような知見が得られた。

1)密度測定結果から算出した体熱膨張係数は粘 性流動の活性化エネルギーと相関があり、SiO₂ 含有量ガラスではCaOが多いガラス程 fragile な 液体であり熱膨張係数も大きいことがわかった。

- 2) 最適化した Doolittle 式の定数には組成依存性 があり、定数 B は化学結合の強さと、定数 V₀ はイオン半径から計算した占有体積と相関が あることがわかった。
- 3) 高温融液からTgよりもはるかに低い温度までの粘度の温度依存性を Doolittle 式で表すことができ、実験値と非常によく対応した。Tg での体積の大幅な増加により、粘度の転移現象が起きている。

惨考文献】

[1]C.A. Angell, 1988: J. Non-Cryst. Solids, 102: 205
[2]C.A. Angell, 1991: J. Non-Cryst. Solids, 131: 12
[3]齊藤義啓:修士論文、長岡技術科学大学(2003)
[4]A. K. Doolittle: J. Appl. Phys, 22, 1471(1951)
[5]長谷川光行:研究論文、長岡技術科学大学(1995)
[6]大田陸夫: J.Ceram.Soc.Japan Vol.99, P.168(1991)