ウエットプラスト加工処理を施した固体電解質を用いた燃料電池の特性評価

環境材料科学研究室 大峯康誠

指導教官 佐藤一則

1.背景・目的

世界の莫大なエネルギー消費による化石燃料資源の将来的な枯渇ならびに化石燃料使 用による地球温暖化等の環境への負荷が地球規模での問題として深刻化している。

新しいエネルギー利用法として最も注目されている技術が燃料電池である。イオン導 電性を有する固体電解質を用いた固体酸化物型燃料電池(SOFC)の開発が進められて いる。SOFC の電解質は、一般的にイットリア安定化ジルコニア(Y₂O₃-ZrO₂:YSZ)が 用いられる。電解質による抵抗損失は、その厚さに比例し増大するため、電解質の薄膜 化が望ましい。しかし、電解質支持型 SOFC では、燃料電池の機械的強度維持のために YSZ 電解質厚さが 300~500 μmに限られ、電解質抵抗の低減には限界があった。

新たな解決手法として、ウエットブラスト法を用いた加工により低抵抗化と機械的強 度を兼ね備えた YSZ 電解質を作製する方法を考案した。ウエットブラスト加工法は、圧 縮エアー・水・研磨剤を同時に加工対象物に吹き付け、表面加工や洗浄を施す方法であ る。加工目的に合わせて混合する研磨剤の大きさや形状を選択し、噴射スピード等を変 化させることで、加工力(表面研削・凹凸化)を自在にコントロールできる加工である。 危険な薬品を使用しない物理的な工法のため、粉塵による作業環境悪化の改善も含めて、 人や環境に優しい機械加工技術である。

本研究では、電解質支持型 SOFC に対してウエットブラスト加工法を用い、YSZ 電解 質の機械的強度を損なうことなく電解質抵抗の低減化、および電解質・電極界面の接合 状態の改善により、SOFC 性能の向上を図ることを目的とした。

2.実験方法

2-1.応力解析およびウエットブラスト加工ディスクの作製

未加工のディスクと加工を施したディスクに対して有限要素法による応力解析シミュ レーションを行い、応力・ひずみ分布を評価した。未加工のディスクは直径 15 mm・厚 さ 100 µm、加工を施したディスクは加工部が直径 10 mm・厚さ 100 µm、外周部が 直径 15 mm・厚さ 1000 µm と設定した。縦と横のひずみ比を表すポアソン比は、対象 物がセラミックス材料であることから、ひずみは極めて低いと判断し、0.3 とした。^[1]

ウエットブラスト加工は、粒径 14~15 µmの Al₂O₃粒子を研磨剤とするウエットブ ラスト加工機を用いた。厚さ 400 µmの YSZ ディスク両端面の円縁部をマスキングし、 プラストエアー圧力 0.25 MPa で 50 回ずつブラスト加工した。加工表面粗さを粗さ測定 器で測定した。

2-2.ウエットプラスト加工ディスクの電池性能評価

ウエットブラスト加工面が電池性能に与える影響を明らかにするため、加工済みディ スクと未加工ディスクに対し、燃料極に Ni-YSZ サーメット型電極、空気極にペロブス カイト型遷移金属酸化物((La_{0.85}Sr_{0.15})_{0.90}MnO₃:LSM)を用いて単セルを構成した。 作製した試料セルについて、600~850 における発生起電力測定、800 における放電 電流密度・発生電力密度およびアノード、カソード分極抵抗の測定を行い、未加工セル と比較検討を行った。燃料ガスは H₂:100 cm³・min⁻¹、酸素ガスはO₂:100 cm³・min⁻¹ をそれぞれ供給した。

3.実験結果および考察

3-1.応力解析および表面粗さ比較

有限要素法によって得 られた応力分布図を図1 に示した。均一厚さのデ ィスクは全体的に、凹型 に加工したディスクでは 加工エッジ部に圧縮応力 が発生していることがわ かった。また、均一な厚 さのディスクの縁は、凹 型に加工したディスクに 比べ、上下に大きくひず みを生じた。本シミュレ ーションにおける両ディ スクの最大内部応力比 (1: 2)は約 30:1 であることがわかった。 均一厚さを持つディスク に比べ、両端面円周部を 残して同心円状の研削加 工を施したディスクは、 変形に対する高い抵抗を 示した。本解析で比較し た2つの試料に関する最

図1 有限要素法による応力分布

大内部応力比の差は、ジルコニア系電解質の変形に対する抵抗として、十分に満足でき る結果である。

未加工ディスクとウエットブラスト加工によって得られたディスクの表面粗さを図2 に示した。ウエットブラスト加工は未加工ディスクと比べて、凹凸が増し、より粗い表 面もたらした。電極を接合した時、電極との接触性向上が期待できた。

3-2. 電池性能比較

Ni-YSZ / YSZ / LSZ-YSZ の常温水蒸気添加における発生起電力の温度依存性を図 3 に示した。いずれのセルも温度上昇と共に発生起電力は低下し、理論起電力と良い一致

が割れや亀裂を生じることなく両極の酸素 分圧を保っていることが考えられる。 Ni-YSZ / YSZ / LSZ-YSZの800 における 放電電流密度および発生電力密度測定を図 4に示した。ウエットブラスト加工を施し たセルは、未加工のセルと比較して高い電 池性能を示した。また、アノード・カソー ド過電圧を図5に示した。カソード過電圧 にはウエットブラスト加工の効果は見られ なかったが、アノード過電圧は未加工の 1/6 程度に低減した。横軸に温度の逆数 (T-1)、縦軸にアノード・カソード分極抵 抗の逆数(Rp-1)をとったアレニウスプロ ットを図6に示した。Rp-1はほぼ直線に乗 った。アノード反応における見かけの活性 化エネルギーは、双方のセルとも、ほぼ同 じ値を示した。この結果は反応機構が変化 したのではなく、反応面積が増大したこと を示すと考えられる。カソード反応に対す る Rp-1のアレニウスプロットは、ほぼ直線 を示したが、その値はアノード反応に比べ て極端に低く、その活性化エネルギーは未 加工セルとブラスト加工セルに対して異な った値を示し、ウエットブラスト加工処理 がカソード界面に及ぼす優位性を判断する には困難であった。

を示した。ウエットブラスト加工ディスク

図3 水蒸気添加における発生 起電力測定

図6 アノード(左)・カソード(右)分極抵抗のアレニウスプロット

- 4.結論
- ウエットブラスト加工処理は、マスクのパターニングによる強度維持や複雑なセラミックス加工への応用が期待できる。
- ウエットブラスト加工処理した電解質ディスクを用いた燃料電池は、未加工セルと比べて高い発電性能を示した。
- ・ ウエットブラスト加工はジルコニア系電解質に対する加工技術の新たな選択肢となり、SOFC性能向上に寄与することを示した。

5.参考文献

1) J. Matter. Sci., <u>28(1993)4681-4688</u>.