1. はじめに

現在、我が国の一般廃棄物の中間処理は は主に焼却処理が行われ,排出される焼却 残渣は埋め立て処分されてきた。しかし, 近年,最終処分場の逼迫やダイオキシン類 の発生抑制,循環型社会形成基本法により マテリアル,サーマルリサイクルの必要性 から、次世代型ごみ焼却処理方法として、 ガス化溶融処理法が注目され,普及が進ん でいる。ガス化溶融処理法は、一般廃棄物を 粉砕・乾燥等の前処理後,熱分解炉で約 400 ~600 程度の還元雰囲気下で熱分解・ガス 化することで,廃棄物の中間処理を行う方 法である。その後,熱分解残渣は溶融するこ とでスラグ化し,道路骨材等へと有効利用 する。この処理方法の最大の特徴は、熱分解 炉と溶融炉の2つ処理工程があることが挙 げられる。そのため,各工程において,原料 である一般廃棄物や熱分解残渣の発生量や 燃料性を把握することが非常に重要である。 さらに、この 2 つ制御工程はトレードオフ の関係にあり、これまでの処理法に比べ、運 転制御や運転条件の決定が困難であるため, 熱分解モデルを用いて,エネルギー回収や 安定した処理を行うための最適な熱分解条 件を検討することが重要である。

そこで,本研究は,一般廃棄物を構成する 代表的な化学物質で熱重量(TG)曲線を表 現する熱分解モデルを構築し,一般廃棄物 の組成を化学物質の割合で表現可能である ことに加え,熱量の点からも検討を行い,一 般廃棄物の発熱量や残渣発熱量を計算し, 本熱分解モデルにより,ガス化溶融処理法 における熱分解炉内の現象を把握し,熱分 解反応に与える影響について検討を行った。 廃棄物・有害物管理工学研究室 沼田博次 指導教官 藤田昌一,小松俊哉,姫野修司

2. 試料及び実験

2.1 一般廃棄物を構成する代表物質

ー般廃棄物を構成する代表物質として, セルロース,キシラン,リグニン,SiO₂を用い, ポリエチレン(PE)として市販されている ごみ袋,レジ袋,ポリプロピレン(PP)とし て商品(たばこ、即席面等)の外装フィルム, ポリスチレン(PS)として即席麺と弁当の 容器類を用い,粉砕機によって約 1mm 角に 粉砕し,実験を行った。

2.2 廃棄物固形燃料(RDF)

RDF は一般廃棄物と異なり,不燃分除去 や水分除去,固化助長のために CaO や Ca(OH)₂を添加しているが,900K 以下での 熱分解は起こらず,一般廃棄物中の不燃分 が増加するだけと考えられたため, RDF を 一般廃棄物と同等のものと考え,RDF を模 擬試料として用いた。

用いた RDF は RDF 製造施設のうち中・ 大規模の 8 施設を選定し,粉砕機により綿 状粉砕したものを試料として用いた。

2.3 熱分解実験

熱分解残渣量の測定は管状型電気炉(光 洋サーモシステム株式会社 KTF-433)を用 い,実験条件は反応温度 350~600 とし,反 応時間は 60 分とした。具体的には試料約 10gをアルミナ坩堝に秤量し,設定温度に到 達後,炉心管中央に試料を移動させ,熱分解 させた。60 分後,迅速に試料を避熱帯に引 き寄せ,炉心間中央部が 80 以下になり次 第,炉心管より取り出し,残渣量を電子天秤 により測定した。また,炉心管内は約 1~1.5 時間,窒素を通気し,還元雰囲気とした。 次に TG 曲線の測定は熱重量・示差熱測 定装置(SII TG/DTA 320)を用いて測定した。 実験方法は,試料 10mg を秤量し,炉内に設 置後,窒素を 15 分間通気し還元雰囲気とし, 測定を行った。

2.4 RDF 及び熱分解残渣の発熱量測定

各代表物質や RDF,熱分解残渣の発熱量 を測定は,熱研式自動ボンベ熱量計(島津製 作所 CA-4P)を用いて,測定を行った。前処 理として,RDF は粉砕機により粉砕した試 料を,熱分解残渣はすり鉢にて微粉砕した ものを測定に用いた。

3. 熱分解モデルの構築

3.1 昇温下における熱分解モデル

本研究では 2.1 で述べた一般廃棄物を構 成する代表的な化学物質の TG 曲線を下記 に示すようにモデル化し,それらを重量割 合で加成することで一般廃棄物の TG 曲線 を表現可能なことを確認した¹⁾。以下にそ の昇温モデルの概要を述べる。

まず,一般廃棄物の熱分解は水分が蒸発 した後,*i* から *N* 個の各代表物質の反応が並 列に起こるものと考え,それらの揮発割合 を *X_i*(*T*)[-] (0 < *X_i*(*T*) < 1),反応率を*f_i*[-]とし た場合,ある温度 *T* での熱分解反応におけ る揮発割合 *X*(*T*)[-](0 < *X*(*T*) < 1)は(1)式で 表せる⁴⁾。

$$X(T) = \frac{W(T) - W_{all,final}}{W_{all,initial} - W_{all,final}} = \sum_{i}^{N} f_i \cdot X_i(T)$$
(1)

ここで、 $W_{all,initial}[mg]$ は試料の全重量、 $W_{all,final}[mg]$ は試料の最終的な残渣重 量、W(T)[mg]はある温度Tでの試料重量、 $X_i(T)[-]$ はある温度Tでの第i反応での揮発 分の反応割合、 $f_i[-]$ は全体の反応重量に占め る第i反応割合である。

次に,第 *i* 反応の熱分解反応について,その反応速度式は時間 *t* [s]での試料反応の揮発分を試料揮発割合 *X_i(t)*[-]を用いると(2)

式で表すことができる。

$$\frac{dX_{i}(t)}{dt} = k_{i} \{1 - X_{i}(t)\}^{n_{i}} = A_{i} e^{-E_{i}/RT} \{1 - X_{i}(t)\}^{n_{i}}$$
(2)

ここで,*k_i*[1/s]は第 *i* 反応における反応速 度定数,*A_i*[1/s]は第 *i* 反応における頻度因 子,*E_i*[J/mol]は第 *i* 反応における活性化エネ ルギー, *n_i*[-]は第 *i* 反応における反応次数, *R*[J/K/mol]は気体定数である。

(2)式を一定昇温速度 [K/s]を用いて,試料の揮発割合 X_i(T)[-]は(3)式になる。

$$X(T) \cong \left\{ \frac{ART^2 (n_i - 1)(1 - 2RT / E_i)e^{-E_i/RT}}{E_i \mathbf{b}} + 1 \right\}^{1/(1 - n_i)} (n_i \neq 1) \quad (3)$$

ここで,*W(T)*は(5)式のように表すことが でき,(4)式を用いて温度 *T* に対する試料重 量を求めることが可能となる。

$$W(T) = \left\{ \sum f_i X_i(T) \right\} \cdot \left(W_{all,initial} - W_{all,final} \right) + W_{all,final}$$
(4)

3.2 定温下における熱分解モデル

定温での熱分解反応を解析するための熱 分解モデルとして,(2)式を温度一定条件と し,(5)式で表すある反応時間 t[s]に対する 反応割合 $X_i(t)[-](0 < X_i(t) < 1)で積分し整理$ することにより,(6)式を得る。また,本研究では反応時間を 60 分とし,この定温モデル $に用いた係数<math>k_i$, A_i , E_i , n_i は昇温モデルに用 いた係数と同じ値を用いた。

$$X_{i}(t) = \frac{W(t) - W_{t=60}}{W_{t=0} - W_{t=60}} = \sum_{i}^{N} f_{i} \cdot X_{i}(t) \quad (T = \text{const})$$
(5)

$$X_{i}(t) = 1 - \left\{ 1 + (n_{i} - 1)A_{i}e^{-E_{i}/RT}t \right\}^{1/1 - n_{i}} (n \neq 1)$$

(T=const) (6)

ここで, W(t) [mg]はある温度 T 一定下で 時間 t における試料重量, W_{t=60}[mg]はある 温度 T 一定下で 60 分間反応後の試料重 量, W_{t=0}[mg]は反応初期の試料重量, X(t) [-] はある温度 T 一定下で時間 t における揮発 割合である。(5)式を整理すると(7)式となる。 W(t) = $\left\{\sum_{i}^{N} f_{i} \cdot X_{i}(t)\right\} \cdot (W_{t=0} - W_{t=60}) + W_{t=60}(T=\text{const})(7)$

反応時間を 60 分としたのは、熱分解時間 60 分で試料の反応がほぼ終了する時間と 考えられるためである。また,全温度に対す る時間 60 分後の残渣量を測定することは 困難であるため, 熊田ら²⁾の TG 曲線 (2K/min)と各温度での定温実験(75分間) 保持)での残渣量がほぼ同等であったこと より,W_{t=60}を 3.1 の昇温下の熱分解モデル 用いて温度一定下で時間 60 分反応させた ときの残渣量を計算し求めた。しかし,定温 下で時間 60 分反応させたときの残渣量を 表現することが可能な,適した昇温速度 を決定する必要がある。例として、Fig.1 に RDF-A における昇温モデルの昇温速度を 10~0.1 /min で変化させた TG 曲線と定温 実験による実験値を比較した結果を示す。 この結果より,昇温モデルにより W_{t=60}を計 算するための昇温速度は 1.0[K/min]と決定 した。

また,一般廃棄物は多組成で混合されて いることから,一般廃棄物が *L* 種類から成 り立つとし, *j* 成分重量割合 *g*_j の組成比の 試料重量は(8)式で示すような単成分モデ ル式の加成性で表現した。

$$W_{mix}(t) = \sum_{j=1}^{L} g_j \cdot W_j(t)$$
 $(j=1\cdots L)$ (T=const) (8)

3.3 発熱量のモデル化

Fig.2に試料発熱量及びある熱分解温度 *T* で時間 *t* における残渣発熱量のモデル化の 概要を示す。本モデルにより RDF の組成比 を代表物質の組成比として推算可能であり, 試料の発熱量を推算するにあたって,代表 物質の発熱量の加成性が成り立つため,式 (9)式により,試料の発熱量を表現した。

$$Q_{mix} = \sum_{j}^{L} q_{j} g_{j} \qquad (j = 1 \cdots L)$$
⁽⁹⁾

ここで, Q_{mix} [kcal/kg]は RDF の発熱量, q_j [kcal/kg]は各化学物質単独での発熱量, g_j [-]は各化学物質の重量割合を示す。 次に,熱分解後の試料残渣発熱量のモデ ル化として,まず,単一成分で考えると,(7) 式より温度 T 一定下での時間 t の試料残渣 量を求められ,発熱量は熱を加えることに より揮発した割合だけ試料残渣発熱量が減 少すると仮定し,温度 T 時間 t 時のある化 学物質単独の残渣発熱量 q_{char}[kcal/kg]は試 料重量割合 w(t)[-]を用いて(11)式により求 めた。

$$q_{char} = q \cdot w(t) \tag{11}$$

また,多組成に拡張すると(12)式を得る。

$$Q_{mix,char} = \sum_{j}^{L} g_{j} \cdot q_{char_{j}} \qquad (j=1\cdots L) \qquad (12)$$

ここで,*Q_{mix,char}*[kcal/kg]は熱分解後の RDFの残渣発熱量,q_{charj} [kcal/kg]は熱分解 後の各化学物質の残渣発熱量である。

Fig.1 RDF-A における昇温速度を変化させた TG曲線と 各温度で時間 60 分反応させた実験値の比較

4. 結果及び考察

4.1 一般廃棄物の組成及び発熱量の推測 に関する検討

Table 1に各代表物質の熱量計による測定 値と文献値³⁻⁴⁾の比較したものを,Table 2 に 本研究で使用した RDF の組成比を,Table 3 に RDF-A~Hの TG 曲線より一般廃棄物の 組成を予測した結果を示す。また,Fig.3 に一 般廃棄物の TG 曲線を各代表物質 TG 曲線の 加成による近似例を示す。結果,計算組成と 実組成は概ね一致し,RDFの性状をよく表し ていると考えられる。

次に、この計算した組成と Table 1 に示し た各単成分の発熱量 qexp を用いて RDF の発 熱量について検討した。Table 4 に実験値 Qexp とモデルによる計算値を示す。結 果,RDF-A~H において熱量計にて求めた発 熱量と熱分解モデルによる計算値の差は 300kcal/kg 程度で一致した。

したがって,これまで本研究は TG 曲線を 熱分解モデルで解析を行い、決定された組成 がほぼ RDF の可燃分とプラスチック分と一 致する事で熱分解モデルの妥当性の検討を 行ってきた。今回,さらに TG 曲線より決定 された組成比を用いて発熱量の予測を行い, 実際のRDFの発熱量とほぼ一致したことは, 🧋 一般廃棄物の可燃分、プラスチック分の代表 的な物質の選定として熱分解モデルの妥当 性を強く推察すると考えられた。

4.2 熱分解残渣量の予測についての検討

Fig.4に反応温度350~600 における反応 Table 4 実験とモデルによる RDF発熱量の比較(kcal/kg) 時間60分として管状炉を用いた定温実験と 本モデルにより100~600 までの各温度,反 応時間 60 分で計算した熱分解残渣量を示す。-

結果,350~600 において,計算値と実験 値の差は 5.0wt% 程度で一致した。

全ての RDF において,熱分解反応は全 3 段階の反応があり,第1段階は,200~320 の範囲で可燃分の反応により減少し,第2 ニンやヘミセルロースといった固定炭素を

Table 1 熱分解モデルに用いた代表物質の発熱量(kcal/kg)

	Cellulose	Xylan	Lignin	PE	PP	PS
q ref	4,183	4,178	5,996	11,140	11,506	9,604
q exp	3,922	3,405	4,632	10,904	11,049	9,588

Table 2 実験に用いた RDF 組成割合(wt%)

	RDF-A	RDF-B	RDF-C	RDF-D	RDF-E	RDF-F	RDF-G	RDF-H
Paper	62.7	21.0	47.9	53.4	44.1	67.0	44.5	95.7
Garbage	1.7	21.0	7.2	21.8	19.3	2.0	33.7	-
Fiber	4.4	21.0	10.5	-	-	1.0	-	-
Tree	15.5	9.0	0.5	11.7	4.6	1.0	1.6	1.5
Other combustibles		5.0	6.0	2.1	2.1	1.0		
Total combustibles	84.3		72.1	89.0	70.1	72.0	79.8	97.2
Plastic	13.2	17.0	27.7	10.0	28.3	27.0	19.1	2.8
Incombustibles	2.6	6.0	0.2	1.1	1.6	1.0	1.1	
Added lime	0.5	1.0	1.0	1.0	1.0	2.0		
Moisture	2.1	3.0	1.6	3.0	3.4	2.5	3.3	2.5
Ash	12.9	17.8	10.2	12.9	10.6	7.4	8.4	6.2
Volatile matter	72.3	67.6	75.4	72.2	73.4	78.9	75.9	80.3
Fixed carbon	12.7	11.5	12.8	12.0	12.6	11.2	12.4	11.0

Table 3 熱分解モデルに用いた代表物質の組成(wt%)

	<u>RDF-A</u>	RDF-B	RDF-C	RDF-D	RDF-E	RDF-F	RDF-G	RDF-H
Cellulose	25	14	20	36	18	38	29	47
Xylan	43	36	42	23	42	24	41	12
Lignin	20	35	15	31	14	17	17	32
Fotal combustibles	88	85	77	90	74	79	87	91
PE + PP	8	5	15	8	15	13	8	8
PS	4	4	8	1	8	8	5	1
Total plastic	12	9	23	9	23	21	13	9
Incombustibles	0	6	0	1	3	0	0	0

_		RDF-A	RDF-B	RDF-C	RDF-D	RDF-E	RDF-F	RDF-G	RDF-F
	Q _{exp}	4,706	3,935	4,841	4,392	5,214	5,205	5,005	5,007
_	Q_{cal}	4,633	4,328	5,323	4,605	5,198	5,289	4,678	4,708
	Difference	73	393	482	213	16	84	327	299

段階は 320~450 の範囲でプラスチック 分の反応により減少する。また,第3段階に おいて,第2段階でプラスチック分が全て 揮発するため,可燃分中の成分であるリグ 多く含む成分であると考えられ,それらの 成分割合により,各 RDF において,残渣量の 違いが生じると考えられる。

4.3 残渣発熱量の予測についての検討

Fig.5 に温度 400,500,600 における時間 60 分での実験及びモデルによる単位 RDF 当りの残渣発熱量を示す。結果,単位 RDF 当りの残渣発熱量の計算値と実験値の差 は 300kcal/kg-RDF 程度で一致した。

全ての RDF において, 4.2 で述べた温度範 囲で反応が進行することが確認された。そ こで,可燃分の多い RDF-H とプラスチック 分が多い RDF-E に注目し,熱分解前の RDF のもつ発熱量を100%とした場合、熱分解温 度によりどれだけ減少するかについて考 察すると,まず,200~320 では,可燃分が 反応する温度領域であるため,RDF-H は 200 時 99.8%から 320 時 54.7%と発熱量 は約 45%減少する。一方,RDF-E は 200 時 99.8%から 320 時 71.9%となり,発熱量 は約 30%減少し,可燃分が多く含まれる RDF ほど減少割合が大きくなることが確 認できた。次に,320~450 では,プラスチ ック分が反応を始める温度範囲であるた め, RDF-Hは 320 時 54.7%から 450 時 28.7%と減少し,RDF-Eは320 時71.9%か ら 450 時 20.3%と減少し,プラスチック分 が多く含まれる RDF ほど残渣発熱量の減 少が大きくなる事が確認できた。

以上のことより,本モデルによる解析結 果は,200~320 における可燃分による影響,320~450 におけるプラスチック分に よる影響,450 以降において残渣量や発熱 量が一定を示すという現象をよく表現で き,その組成による変動についても実験結 果とよく一致しているところから,本モデ ルによる解析は実際の熱分解炉内の現象 を表現することが可能であることが確認 できた。

5. 本モデルを用いたガス化溶融処理にお ける最適な熱分解温度についての検討

実際のガス化溶融技術を考えた場合,次 工程の溶融炉に対し,熱分解炉はどのよう な運転条件を考えるべきかを検討した。

まず,両工程において,消費エネルギー量 を低くするためには,熱分解炉を低温度で 行い,熱分解残渣の発熱量を高めることで, 溶融する際の消費エネルギーを低くするこ とが望ましい。これは,プラスチック分が反 応せず,残渣中に多く含まれると考えられ る 320~450 の温度領域が最も望ましい と考えられる。しかし,この温度範囲 は,Fig.5 に示すように,試料の組成割合が変 動することより,約 1,000kcal/kg-RDF の残 渣発熱量の幅がある。したがって,試料の組 成比に大きく影響を受けることから,処理 の安定性に注意が必要である。

その処理の安定性を求めるためには,試 料の組成変動に影響を受けず,ほぼ一定の 熱分解残渣量と残渣発熱量を持った残渣が 安定的に供給されるのが望ましいと考えら れる。Fig.5 に示すように,それらの条件を 満たす温度範囲はプラスチック分が揮発し, 残渣内の成分がほぼ可燃分と考えられる 450 以上であると考えられる。しか し,450 を超過すると溶融するために消費 するエネルギーが増加することから,450 が最も適していると考えられる。

以上より,本モデルは一般廃棄物の組成 による変動を追従することが可能である事 から,ガス化溶融処理における熱分解炉内 の現象を強く反映しているものである事が 強く示唆された。

6. 結論

本研究では一般廃棄物の TG 曲線を解析 することで得られる代表物質の組成比を用 い,一般廃棄物の発熱量や異なる熱分解温 度による熱分解残渣量や残渣発熱量を予測 することが可能であることを確認した。そ して,本モデルを用いて熱分解反応に与え る影響を検討した結果,以下の結論を得た。

- 1) 一般廃棄物の TG 曲線より得られた代表 物質の組成比を用いて一般廃棄物の発 熱量も予測可能であることより,その組 成比は熱量の点からも妥当であること が確認された。
- 2)本モデルは各熱分解条件による熱分解 残渣量やその発熱量は実験による値と よく一致していることより,熱分解残渣 の発生量や燃料性を把握することが可 能であることが確認された。
- 3) 200~320 では可燃分,320~450 では プラスチック類の割合が残渣量,残渣発 熱量に影響を及ぼし,450 を超過すると, 熱分解残渣や残渣発熱量は一定になり, 一般廃棄物の組成による影響は少なく なることが確認された。
- 4) 熱分解モデルを用いることにより,ガス
 化溶融処理の運転条件を模索した結
 果,450 が最も良いと示唆された。

以上より,本熱分解モデルを用いること により,一般廃棄物の発熱量やその熱分解 残渣の発生量やその発熱量が予測可能であ るため,熱分解ガス化溶融処理の中の熱分 解工程における最適な運転条件を把握する ことが可能であることがわかった。

<参考文献>

1) 姫野修司,弥富洋介,小松俊哉,藤田昌一,熱分析を用 いた一般廃棄物の熱分解挙動のモデル化,廃棄物学 会,Vol.15,No.2 印刷中 2) 熊田憲彦,藤井健一,浅見直 人;廃棄物ガス変換システム解析プログラムの開発,第 13 回廃棄物学会講演論文集,pp.799-801,2002 社団法人 日本エネルギー学会:バイオマスハンドプッ ク,pp.17-18 (2002) 3) 三方信行,橋本茂,武内隆春,西山 秀雄:廃プラスチック熱分解特性の研究,新日鉄技 報,vol.360,pp38-45 (1996)