人工雪崩誘発のための雪中爆破による積雪層の破壊・変形状態について

環境システム工学専攻 大気水圏ダイナミクス研究室 林 徹 指導教官 早川 典生

1.背景及び目的

雪崩は昼夜の区別なく条件が整えば発生し、 道路や車輌に被害を与え、最悪の場合尊い命ま でも奪ってしまう。雪崩の原因となる不安定な 斜面積雪を事前に除去し冬期道路交通の安全 を図る事を目的として、人工雪崩は実施された。 人工雪崩の誘発方法の中で、危険斜面全体の雪 を崩落させるという目的で、危険箇所に爆薬を 仕掛けて爆破する方法(以下これを雪中爆破 と呼ぶ)は有効な方法である。しかし、手法と しては経験な面が多いため、近年爆破による人 工雪崩の発生プロセスについての基礎的実験 が行われている。その中で爆破による積雪層の 破壊・変形の状況は、実験観測と解析が困難で あり充分な解明を果たすに至っていない状況 にある。そこで本研究は現地実験から、爆破に よる積雪層の破壊・変形状況、及び装薬条件に よる雪崩流下状況について解析し、人工雪崩誘 発機構の解明を図った。

雪中爆破による雪崩誘発

雪中爆破により雪崩を誘発するには、危険斜 面上の積雪層を流下しやすい状態にした箇所 (以下これを流下箇所と呼ぶ)と、その前方に あり流下箇所を流しやすくする箇所(以下これ を雪崩始動面と呼ぶ、図1a)参照)の2点を爆 破により形成することが必要であるとされて いる。流下箇所の流下しやすい状態とは、爆破 により積雪層全体が破壊されている状態、及び 積雪層内の抵抗力が駆動力より小さくなった、 又は駆動力が抵抗力より大きくなった状態で ある。雪崩始動面とは流下箇所の前方積雪層内 に形成される滑り台状の部分のことである。

2.研究内容

本研究は以下の3点において解析を行った。 装薬配置・装薬量を変化させたときの雪崩始 動面の形成状態 爆破による積雪層への影響について 装薬条件による雪崩誘発成否を決める条件 を求める

3.実験概要

実験は、2003年2月8日、4月4日、2004年 2月2日において新潟県南魚沼郡塩沢町栃窪の 山腹斜面で行った。2003年実験は、破壊孔及び 周辺の圧縮現象を解明することを目的として、 破壊孔周辺の密度測定、破壊孔周辺の硬度測定、 破壊孔半径の測定、破壊孔内の残雪の重量及び その密度測定を行った。2004年実験は、雪崩始 動面の形成状況と雪崩流下状況を把握するこ とを目的として、装薬条件を変え実際に小規模 な雪崩を発生させ、雪崩の流下状況の調査と雪 崩後の断面における雪崩始動面の硬度測定を 行った。

4.雪崩始動面の形成状態

2004年2月2日に雪崩始動面の形成状況を把 握するため、雪崩誘発後の断面観測及び硬度測 定を行った。その結果、図 1a)に示すように、 黒い爆破跡を境に右側で積雪層が乱れておら ず、左側で乱れているのが見られた。よって黒 い爆破跡付近が雪崩始動面と推測され、硬度測 定を行ったところ図1のb)、c)より雪崩始動面 と推測される箇所及び下部付近がこの断面内 において相対的に硬度が大きく、圧縮されてい ることが確認された。

a) 雪崩流下後の断面状況

b) 爆破跡付近の硬度(単位:kPa)

c) 硬度を相対的に色分けした図
 (単位:kPa、平均値=63kPa、平均値より大きい値を濃く塗っている。また100kPaを超えた値は更に濃く塗っている)

- 図1 雪崩流下後の断面状況及び硬度測定 (2004年2月2日実験)
- 5.爆破による破壊孔周辺の積雪層への影響

雪崩始動面は、爆破跡付近に形成され、その 積雪層内において相対的に圧縮されているこ とが研究 において確認された。そこで、基礎 的実験として、積雪層を崩さないように積雪層 内で爆破させ、破壊孔として爆破の影響を残し、 それを詳しく調査することで破壊孔周辺の積 雪層の圧縮現象を解析することを行った 2003 年実験について述べる。

5-1 爆破前後の密度の比較による破壊孔周辺の 圧縮幅の調査

同一層において爆破前の密度と爆破後の破 壊孔周辺の密度を比較し、爆破後に増加ならば 破壊孔周辺が圧縮されたとして調査した。その 結果、破壊孔縁から 10cm 程度において密度の 増加が顕著であった。また、測定位置に関して は破壊孔下部付近において顕著に密度増加が 見られ、更に装薬位置から谷側の増加割合が多 かった(図2、表1参照)。よって、破壊孔周辺 の圧縮現象と、雪崩始動面が爆破跡付近に形成 されていたことを考慮して、雪崩始動面を形成 する装薬配置において、圧縮部を形成できる破 壊孔下部谷側付近を意識して装薬配置をした ほうが良いことを示唆していると考える。

(a) 測定箇所(破壊孔下部、地表から 60cm、 しまり・ざらめ層)

図2 破壊孔下部の密度変化

(2003年4月4日実験、装薬量300g)

表1 破壊孔下部の密度変化について

装薬方向		装薬量(g)						
	爆破前密度 (g/cm ³)	300			200			
		測定値範囲	変化率範囲	उक्त ⊬ 5/0∕)	測定値範囲	変化率範囲	ज्ज्र ।/ ⊐////)	
	_	(g/cm^3)	(%)	平均(%)	(g/cm^3)	(%)	千巧(%)	
山側	0.554	0.562~0.636	5.0~18.9	12.1	-	-	-	
谷側	0.554	0.594~0.718	11.0~34.2	18.2	0.601~0.644	12.4~20.3	15.4	

(2003年4月4日実験)

5-2 破壊孔の形成とその周辺の圧縮現象の再現 5-2-1 破壊孔算定式の検証

爆破による積雪層の破壊孔半径を推定する ための式として以下に示している森末(1997) が考案した実験式¹⁾が挙げられる。この式の検 証は過去にも行われているが幾分足りないと 思われる。よって、この観測場所において適用 できるかということも含め検証した。

$$L = d \cdot f_{H}(H) \cdot f_{VF}(V, F) \cdot f_{R}(R) \cdot R^{3}$$

$$\begin{cases} f_{H}(H) = \sqrt[4]{H} \\ f_{VF}(V, F) = \frac{V}{F} \\ f_{R}(R) = \left(\sqrt{1 + \frac{1}{R} - 0.41}\right)^{3} \end{cases}$$

ここに、d はてんそく係数(d=1.2) H は雪 面からの装薬位置(m)、V は爆速(m/sec) F は 火薬力(l・atm)、R は破壊孔半径(m)である。

上記式群をまとめると式(1)のようになる。

$$R\left(\sqrt{1+\frac{1}{R}}-0.41\right) = \left(\frac{L \cdot F}{d \cdot \sqrt[4]{H} \cdot V}\right)^{\frac{1}{3}} \qquad (1)$$

よって、式(1)を近似することにより破壊孔 半径 R を求めた。破壊孔半径の測定値は 2003 年2月8日、4月4日の共に装薬量 300g、200g において測定したものを用いる。図3に示すよ うに測定値と計算値を比較した結果、装薬量、 積雪条件に関らず測定値と程よく合うとこと を確認した。

図3 装薬位置Hと計算破壊孔半径Rの関係 (線:計算値、点:測定値)

5-2-2 破壊孔周辺の圧縮幅の推定

次に爆破による破壊孔周辺の圧縮現象を、

「積雪層内で爆破が起きると、始めに破壊・融 解・蒸発が起き、次に圧縮され、破壊孔と圧縮 部ができるという流れが瞬時に起きるとする。 ここで、破壊孔周辺の圧縮現象は球状に広がる とし、この過程で破壊孔周辺の積雪層を圧縮幅 (R)で圧縮して破壊孔を押し広げるものと する。」と仮定(図4参照)し再現することを 試みた。推定手順は、爆破による熱量がどのよ うに使われているかを推定し、その熱量を用い、 仮定に沿い計算を進める、というようになる。

爆破による熱量 E を下式のように消費された ものと仮定する。

 $E = E_1 + E_2 + E_3 + E_4 \qquad (2)$

ここに、E₁:積雪層を破壊する熱量(図4)、 E₂:積雪層を融解・蒸発する熱量(図4)、E₃: 積雪層を圧縮する熱量(図4)、E₄:使用され なかった熱量

積雪層を破壊するエネルギー E_1 の推定は、 Mellorの図⁽²⁾より爆破前密度 の時の雪の圧 縮破壊強度 P(kPa)を求め、その破壊される 体積 V(m³)を乗じることにより推定する。積雪 層を圧縮するエネルギー E_3 の推定は圧縮強度 p(kPa)を爆風圧より推定し、圧縮される体積 V₂(m³)を乗じることにより推定する。積雪層を 融解・蒸発するエネルギー E_2 の推定は、破壊 と圧縮に使用したエネルギーは発生するエネ ルギーE の数%と推定されたため、殆どのエネル ギーが融解・蒸発に使用されるとし、発生した エネルギーE から E_1 、 E_2 、 E_4 を引いた値とする (使用されないエネルギー E_4 を0とする)。

破壊孔縁からの圧縮幅 Rは、式(3)の用に 考える。この式は、圧縮部の質量 M₁が圧縮され る箇所の質量 M と等しいとした式 であり、破壊孔及び圧縮部が球に広がると仮定 した簡素な式である。圧縮部の密度 2 は破壊 孔周辺の密度測定で得た装薬位置から 60cm(す なわち、破壊孔の縁沿い)の密度の平均値とし た。

$$M = M_1 = \left(\frac{4}{3} (\mathbf{R} + \mathbf{R})^3 - \frac{4}{3} \mathbf{R}^3\right) \times {}_2$$
 (3)

ここに、M: 圧縮される箇所の質量(g)、
 M1: 圧縮部の質量(g)、
 2:破壊孔縁沿いの
 平均密度(g/cm³)、R:破壊孔半径(cm)、
 R:
 破壊孔縁からの圧縮幅(cm)

式(3)より R は以下のようになる。

$$R = \left(\frac{3}{4}\frac{M}{2} + R^{3}\right)^{\frac{1}{3}} - R$$
 (4)

式(4)を用い、図 4 の仮定した爆破メカニズ ムに沿い、表 2 の実験データを用いて圧縮幅 R を推定したところ、表 3 に示すように爆破に よる密度増加が見られた破壊孔縁からの距離 10cm に近い値を示した。数 cm の誤差があるの は密度測定器が 10cm の幅を持ったものである ことにより、数 cm 単位で測定できないことに あると考える。

表3 推定された破壊孔縁からの圧縮幅 R

測定年月日	装薬量(e)	破壊孔縁からの圧縮幅 ⊿ R(cm)
2002/#2 890	300	8.4
200342700	200	6.5
2002年4月4日	300	7.4
2003年4月4日	200	8.3

そして、表2から爆破前密度 と諸条件の実 験式を求め、爆薬量と爆破前密度 、そして破 壊孔半径算定式から圧縮幅 R を推定する方法 を示した。

測定日	装薬量 (g)	爆破前密度 <i>ρ</i> (g∕cm ³)	残雪の密度ρ ₁ (g/cm ³)	残雪の重量m ₁ (g)	破壊孔縁密度P₂ (g/cm ³)	破壊孔半径R (cm)
2003年2月8日		0.401	0.513	36690	0.425	75
2003年4月4日	200	0.510	0.554	35440	0.533	119
2003年2月8日	200	0.401	0.475	192285	0.434	83
2003年4月4日	300	0.510	0.537	116790	0.542	99

6.装薬条件による雪崩誘発成否を決める条件

斜面上の安定した積雪層は、駆動力であるす べり面上積雪の重力の斜面方向成分と抵抗力 であるすべり層のせん断抵抗力のバランスが 保たれた状態になっている。よって、雪崩はこ の状態が崩ずれた場合に発生する。すなわち、 雪中爆破を行うことにより雪崩を誘発するこ とは、このバランス状態を崩すことであるとい える。よって、ここでは人工雪崩のメカニズムとし て雪崩始動面が十分であるとしたときの、流下箇所 の応力状態において、爆破の影響が抵抗力の減少に 寄与するとし、雪崩発生成否を決める条件値下を示 唆する。

6-1 人工雪崩誘発成否を決める条件について

図 5.6 爆破による雪崩誘発の際の積雪断面状態

図 5.7 流下箇所の応力状態

: 駆動力、Q:抵抗力、W:積雪の荷重、 : 斜面角度、1:流下箇所長、h:弱層から雪 面までの高さ 図5.6 に示すように爆破により雪崩を誘発す る際に、雪崩始動面及びすべり面を形成すると 考える。そして、図5.7 のように流下個所を考 える(幅bを有する)。いま A=lb なる底面(す べり面)を考え、この面の応力状態は荷重 W、 駆動力 、抵抗力Qからなる。ここで、抵抗力 は底面抵抗力のみと考える。

駆動力は、

$$\frac{W}{A}\sin = (5)$$

であり、 =Q で釣り合っているとすると、

$$\frac{W}{A}\sin = Q \tag{6}$$

となる。この式を

$$F = \frac{QA}{W\sin} \qquad 0 \le F \le 1 \tag{7}$$

と置き、Fが0~1の範囲内のどこかにおいて雪 崩発生可否の境界値があるとした。

次に爆破による影響を式(5.3)に考慮する。 爆破がこの面に影響、すなわち、抵抗力項の A の減少に寄与すると考える。

$$A = {}_{A}lb \tag{8}$$

1

ここに、 AはAの残留面積の割合である。

$$A_{A} = \frac{A - \sum_{i=1}^{n} R_{i}^{2}}{A} = 1 - \frac{\sum_{i=1}^{n} R_{i}^{2}}{A}$$
(9)

また R は破壊孔半径であり、森末による実験式 (5.6)を用いる。

$$R\left(\sqrt{1+\frac{1}{R}}-0.41\right) = \left(\frac{L \cdot F}{d \cdot \sqrt[4]{H} \cdot V}\right)^{\frac{1}{3}}$$
(10)

ここに、L:装薬量(kg)、F:火薬力(l・atm)、 d:てんそく係数(=1.2)、H:装薬深(m)、V: 爆速(m/sec)

6-2 雪崩実験による F の推定

雪崩始動面の装薬配置が雪崩誘発に十分と 思われる 2004 年の 、 、 の 3 ケース、ま た 2001 年 1 ケース、2002 年 2 ケースを用い、 人工雪崩誘発可否の流下箇所の応力バランス F の境界値を推定することを行った。

表 5.3 に応力バランス F の計算に用いるケー ス毎の諸条件、表 5.4 にケース毎の計算結果(計 算破壊孔半径、F、測定流下量)を示す。

表 5.4 より、F 値が 0.65 より大きいと流下箇 所の雪崩誘発がなく(2004 年 実験) 0.62 よ り小さいと誘発されている(2002 年 実験)こ とがわかる。よってこの間に雪崩誘発可否の境 界値があると推定される。

今後、この F の範囲内で雪崩誘発実験を行う ことで、更に雪崩誘発可否の境界値が推定され ると考える。

7.まとめ

雪中爆破雪崩誘発の経験的手法からの却 として始めに考える必要があるのはその象 の把握であり、それは雪崩誘発状況の全体的 な把握と爆破の積雪層への影響の把握であ ると考える。よって、雪崩始動面が爆破跡付 近に形成され、その積雪層内において相対的 に圧縮されていることを把握し、爆破の積雪 層に対する影響範囲が破壊孔縁より10cm 程 度であること、そして破壊孔下部谷側におい て圧縮が顕著であることを把握したことは 1つの成果である。そして、爆破による積雪 層の破壊現象の再現を試みたこと、及び装薬 条件による雪崩誘発成否の条件を求めるこ とは経験的手法の脱却への第一歩であると いえる。

[参考文献]

- (1) 森末晴男、竹内則雄、早川典生(1997):
 雪中爆破による積雪層への影響、日本雪氷
 学会誌「雪氷」59 巻 4 号、p235~p246
- (2) 前野紀一・福田正巳(1986):基礎雪氷工
 学講座第 巻「雪氷の構造と物性」、古今
 書院、p163

	孔数	傾斜8	装薬条件				
実験番号		(°)	幅B(m)	長さL(m)	装薬深h(m)	体積V(m)	
2001	8	43	7.0	2.0	2.2	30.8	
2002①	16	43	7.0	6.0	1.5	63.0	
2002②	32	43	6.8	10.5	1.5	106.3	
2004①	12	34	5.0	6.0	2.4	72.0	
2004@	10	38	5.0	6.0	2.4	72.0	
2004\$	6	35	5.0	6.0	2.4	72.0	

表 5.3 計算に用いるケース毎の条件

表 5.4 ケース毎の計算破壊孔半径、F、及び測定流下量

実験番号	1孔あたりの 計算破壊孔 半径(cm)	F	測定流下 量Q(m ³)	Q/V
2001	0.534	0.49	7	0.23
2002①	0.564	0.62	18	0.29
2002②	0.564	0.55	35	0.33
2004①	0.527	0.65	0	0.00
2004④	0.527	0.71	0	0.00
2004\$	0.527	0.83	0	0.00