
Abstract – The research focused on modelling a social dilemma 
of travel mode choice for commuters. In order to understand 
behavioral process of individuals, two types of simulation model of 
multi-agent learning was built and applied to examining behavior 
of commuters. The first behavioral model is based on 
inductive-learning’s capability of human beings and the second 
model is based on their beliefs and expectations. Evolutionary 
approach is introduced in order to simulate travelers’ learning 
process.  

The first model showed that the same user equilibrium point 
as predicted by conventional equilibrium analysis could be 
reached and stabilized. At the equilibrium point, most of travelers 
specialize in a car-only user or a bus-only user, leaving a small 
number of mixed users. The stable situation is produced by 
interaction process among travelers and by behavioural change 
process of each traveler. 

Furthermore, when travelers are very sensitive to payoff 
differences between car and bus, there is a situation that may 
produce other equilibrium points in addition to the user 
equilibrium point. In these new kinds of equilibrium, which are 
known as ‘deluded’ equilibrium and ‘frozen’ equilibrium, higher 
level of cooperation could be achieved and stabilized. 

The second model revealed that some insightful results could 
be obtained, such as the conditions that make cooperation as a 
possible outcome. They are group-based interactions, limited 
information, and conformist transmission. Emergent 
phenomenon of the system may favor cooperation and resolve the 
dilemma of travel mode choice, if there exists a strong conformist 
transmission. This gives insight to the possibility of solving the 
social dilemma by incorporating an employer-based Travel 
Demand Management (TDM) measure. 

Keywords: travel mode choice, social dilemma, agent-based 
approach, microsimulation. 

1. INTRODUCTION 

Most of models in transportation planning and analysis 
rely on the equation-based modeling. Agent-based approaches 
are still not as widely used as equation-based approaches. An 
agent-based model has the advantage of being validated at an 
individual level, since the behaviors encoded for each agent can 
be compared with local observations on the actual behavior of 
domain individuals. Understanding individual’s behavior is 
important especially in studying effects of transportation 
policies. 

Several works on route choice behavior by Nakayama et al 
[11][12] are the examples of agent-based approaches in 
transportation modeling. Travelers are modeled to have 
bounded rationality, limited information and also capability to 
do cognitive learning. Klugl and Bazzan [9] also studied route 
choice behavior by using a simple heuristic model. In travel 
mode choice, there are not so many works done by researchers. 
One of the inspiring works by Kitamura et al [8] is on travel 
mode choice by using a simple bi-modal transportation system 
and cellular automata.  

Our study focuses on commuters’ mode choice behavior. 

On the highway, all people have right of commuting by private 
car or public transport. As a common good, which is shared by 
people, a social dilemma [2] situation may happen on the 
highway. Selfish behavior of people, who use cars based on 
their personal interest to minimize travel cost, creates traffic 
congestion, and furthermore increases travel cost for users both 
of car and public transit.  

By using a simple bi-modal transportation system, the 
social dilemma situation of travel mode choice is modeled. 
Travelers who use public transit, for example bus, are called as 
cooperative travelers, since they behave cooperatively for the 
sake of all people’s benefit. Car users are defective travelers 
since they consider only their personal interests.  

This study aims to provide an agent-based simulation model 
of travel mode choice in order to understand behavioral process 
of commuters on choosing travel mode. A user equilibrium 
point may also be reached, but more important is the process to 
reach the point and the behavioral change of travelers during 
the process. We attempt to observe complex dynamical 
processes of commuters’ behavior by considering interactions 
and learning processes influential. New findings are expected 
in order to gain an insight into the way of solving the social 
dilemma. 

2. SIMULATION MODEL:  
MODELLING BY FINITE-STATE MACHINES 

Two types of simulation model of multi-agent learning was 
built and applied to examining behavior of commuters. The 
first behavioral model is based on inductive-learning’s 
capability of human beings and the second model is based on 
their beliefs and expectations. Evolutionary approach is 
introduced in order to simulate travelers’ learning process. In 
this section, we will focus on the first model. 

Behavior of autonomous agents may represent behavior of 
travelers who choose mode of commuting. A multiagent 
simulation is utilized to model and to show a complex 
decision-making process of travelers. An agent behaves based 
on a behavioral rule embedded in a kind of inductive learning 
machine named as a finite-state machine (FSM).  

Our simulation model consists of two submodels, 
transportation model and traveler model (see Figure 1). In the 
traveler model, travelers decide the choice of mode guided by 
decision making rules. After all travelers decide the mode of 
commuting, then travel time is calculated in the transportation 
model. Generalized travel cost for each mode can be calculated 
and it returns to travelers as payoffs. Amount of payoff for each 
traveler depends on the mode he has chosen. Day-by-day, the 
generalized travel cost of car and bus may vary dynamically, 
depend on the changes of travelers’ choice. These processes are 
repeated for 10 iterations. After that, an evolutionary process to 
update travelers’ FSM by using genetic algorithm is utilized in 
order to acquire adaptive behavior.  
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Figure 1: Multiagent simulation model by FSMs 

2.1 Transportation Model 

A simple bi-modal transportation system, which comprises 
private car and bus as choices of commuting, is used as a 
transportation model. The two modes are assumed to be 
operated in the same lane so that there will be more interactions 
than if they are operated in exclusive lanes. This simple model 
is used in order to understand basic travel mode choice that 
represents social dilemma situation. 

All travelers own cars so that they can easily change modes 
and they only know the cost of mode they choose. Private car 
users are assumed to be solo drivers. For public transport, bus 
operating frequencies and fare are adjusted so that bus 
passengers can pay the full cost of operating buses. Equations 
and their parameters of generalized travel costs for car and bus 
are derived from the work of Kitamura et al [8]. 
2.2 Traveler Model 

A finite-state machine (FSM) or finite state automaton 
(FSA) is an abstract machine that has only a finite, constant 
amount of memory (the states). FSM looks like a mathematical 
logic that represents a sequence of instructions to be executed, 
depending on a current state of the machine and a current input. 

Formally, a FSM is a 5-tuple: M=(Q,τ,ρ,s,o) [3]. Where Q is 
a set of states, τ is a set of input symbols, ρ is a set of output 
symbols, s:Qxτ Q is the next state function, and o:Qxτ ρ is 
the output function. A 5-tuple is to be interpreted as a machine 
that, if given an input symbol x while it is in the state q, will 
give output o(q,x) and transition to state s(q,x). Only the 
information contained in the current state describes the 
behavior of the machine for a given stimulus, while the entire 
set of states serves as the ‘memory’ of the machine.  

Figure 2 illustrates a finite-state machine with 4 finite states, 
3 input symbols and 2 output symbols. A FSM can also be 
represented by a kind of table as Table 1. A pair of values in 
each cell is a pair of next state function and output function 
(s,o). For example, (A,1) means that next state will be A and 
current output is 1. The number of states, input symbols and 
output symbols can be varied according to modeling needs. 

In our simulation, each agent has a FSM which functions as 
a decision rule to choose mode of traveling. Each agent has a 
FSM with 4 states, 5 input symbols and 2 output symbols. 
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Figure 2: An illustration of a finite-state machine 

Table 1: A representation of a FSM in a table form 

A B C D

a

b
c

(A,1) (D,0)

(D,1) (A,1)

(C,0) (C,0)

current state
input

(A,0) (D,1)

(A,0) (B,0)

(D,0) (D,1)
 

Past payoffs that are memorized as expected payoffs, are 
used to decide the input symbols for the next step. Expected 
payoffs of a traveler are calculated and updated based on a 
work of McFadzean [10]. A traveler received payoff Pt

j of 
using mode j at time t. This payoff is then recorded and used to 
update its expected payoff. The expected payoff Ut

j is updated 
according to Equation (1). 
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j
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where A means automobile or car and B means bus. Only 
expected payoff of the chosen mode is updated. When a traveler 
choose car, his expected payoff of car is then updated. But 
expected payoff of bus will not be updated until the traveler 
chooses bus. 

Weight factor w ranges from 0 to 1. It depends on a 
traveler’s perception of the influence of his payoff Pt

j on the 
expected payoff Ut

j. A traveler with high weight factor is 
resilient to his current payoff. On the other side, a traveler with 
low weight factor is easily affected by his current payoff. 

There are 5 input symbols that are used in the agent’s FSM 
(see Table 2). They represent choices of strategy for a traveler 
to decide which mode they will use for next trip. Each choice of 
strategy has a range of value to differentiate it to other choices 
of strategy. How much is the difference can be categorized into 
several levels, depending on the value of d. Parameter d 
represents the sensitivity of a traveler the difference between 
payoff of car and bus. A larger value of d implies that a traveler 
does not consider so much about payoff differences when 
choosing mode. For example, for a traveler who has a low value 
of d, if he observes that the expected payoff of car is much 
higher than bus, then the input symbol will be 1. But for a 
traveler with high value of d, he might behave differently. 

Initially, for input symbol 1, choices of mode in its set of 
strategy are only car, and for input symbol 5 are only bus. Input 
symbol 2 has 75% choices of car and input symbol 4 has 75% 
choices of bus. Input 3 has 50-50 proportions of car and bus. In 
the beginning, all commuters received a random initial value of 



expected payoff of car and bus ranged from 1 to 2. The first 
choice would determine all the following choices without any 
variation, if an initial value were not assigned. 

Decision making processes of a commuter starts with input 
symbol 3 and state 1. For example, a commuter, say commuter 
C, has a FSM as in Table 2. Let us assume that initial values of 
UA and UB are 1.1 and 1.2, and w=0.9. Initial pair of state and 
output is (3,0), which means that the decision is to choose car, 
coded as 0, and next state will be state 3. After all commuters 
had chosen a mode based on their FSM, they received a payoff 
of their decision. PA is given to commuters who chose car and 
PB is given to commuters who chose bus. Commuter C received 
PA and then he updated his expected payoff of car using 
Equation (1) ( AAA PPU 1.099.0)9.01(1.19.0 +=−+⋅= ). He 
observed that dPd A 22.1)1.099.0( ≤−+< , so that for next 
iteration, the input symbol is 2. Based on input symbol 2, and 
next state 3, Commuter C got new pair of state and output from 
his FSM. The pair is (4,0), so that the decision is to choose car, 
coded as 0, and next state will be state 4. These processes 
continue until the end of iterations (10 trips).  

Table 2: An example of agent’s FSM in table form 

1 2 3 4

(3,0) (2,0)

(2,0) (3,1)
(3,0) (1,1)

current state
input

(3,0) (4,0)

(4,0) (1,0)
(4,0) (2,1)

(4,1) (1,0)
(2,1) (1,1)

(2,1) (3,1)
(3,1) (2,1)

dUU BA 2>−

dUUd BA 2≤−<

dUU BA <−

dUUd AB 2≤−<

dUU AB 2>−

(1)

(2)

(5)
(4)
(3)

 
In order to acquire an adaptive strategy, a genetic algorithm 

(GA) is applied to the FSM of each agent. A chromosome in 
GA encodes the transition function and the output function of 
FSM in each agent with bit strings. A chromosome with length 
60 bit strings encodes a FSM, which consists of 5x4 pairs of 
state and output. Figure 3 illustrates the process. 

For a state, it requires 2-bit strings. The value of 2-bit 
strings ranges from 0 (for binary code 00, the value is 
0.21+0.20) to 3 (for binary code 11, the value is 1.21+1.20). A 
value of 0 represents State 1, a value of 1 represents State 2, a 
value of 2 represents State 3, and a value of 3 represents State 4. 
A choice of mode is represented by a single bit string, since the 
choices of mode are only two, car and bus. A value of 0 
represents car and a value of 1 represents bus. 

Genetic operators, such as selection and two-point 
crossover, are used. Mutation is not implemented in order to 
avoid capricious changes of output value for input symbol 1 
and 5. We still maintain variation of chromosomes by crossover 
among travelers, since travelers are interrelated with each other. 

Agents must have adaptive process in order to evolve 
decision rules they have. There are two kinds of learning 
process that can be used by agents to acquire adaptive rules; 
individual learning and social learning. In individual learning, 
travelers learn based solely on their own experience. 
Sometimes it requires longer time to acquire adaptive behaviors, 
and also it limits travelers’ knowledge about other kinds of rule 
instead of their own rules. Compared to individual learning, 
social learning has advantages since it can short-cut individual 

learning and acquire adaptive behaviors by learning from 
others. In this paper, we utilize social learning only. 

Social learning requires interaction among agents, so that 
we arrange agents in a kind of plane without border, known as a 
torus plane, which were used in Yamashita et al [13], so that 
each agent has 8 surrounding neighbors. It makes possible for 
them to interact each other. Each agent updates his rules (FSM) 
based on the fitness (sum of payoffs) of his own rules and also 
his neighbors’ rules. Genetic algorithm is implemented to 
evolve agents’ rules. Each agent only knows rules owned by his 
neighbors only and also payoffs gained by those rules, so that 
agents are assumed to operate with incomplete information 
regarding with other agents’ behavior. The learning process of 
users is in the process of evolution of rules. Figure 4 illustrates 
the rules-updating process of each agent. 
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Figure 3: Decoding process of a chromosome into a FSM 
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Figure 4: Rules-updating process of an agent 

2.3 Simulation Results and Discussions 

We run simulations with 4,096 travelers, who are arranged 
in a torus plane. Each traveler has a finite-state machine as a 
decision making rule. Memory weights w of travelers are 



assumed to be 0.9. To study the influence of the sensitivity 
parameter d, we vary the value from 0.05 to 0.15 with 
increment 0.025. Simulation is run up to 500 generations with 
10 iterations in a generation. 

Four simulation runs were made for each value of d. After 
observing the results, we decided to discuss the details for 
d=0.1 and d=0.05, since the former case resulted in a more 
stable situation than the cases of d > 0.1 and the latter case gave 
interesting results. 

A. Dynamic Equilibrium Situation at d=0.1 

We run four runs for this case. Statistics for last 100 
generation is summarized in Table 3. Similar to conventional 
analysis, a user equilibrium point is reached when the cost of 
car equals to the cost of bus. For all these runs, the average cost 
of car is almost equal to the cost of bus. But statistically with 
95% confidence interval, only for Run 1 and Run 4, the cost of 
car is significantly equal to cost of bus. The number of bus 
users in Run 1 and Run 4 are significantly the same, as well as 
the equality between Run 2 and Run3. We will discuss in more 
details for Run 1 in this section up to Section C.  

Figure 5 shows the day-to-day dynamics of number of bus 
users. The fluctuation reduced to a small value after Iteration 
2,000’s (Generation 200’s) and maintained until the end of 
simulation, with only a few fluctuations around Iteration 
4,000’s (Generation 400’s). The system is stabilized at the user 
equilibrium point. 

Table 3: Averages and std. deviations (Gen.401-500) 
Run Bus users Car cost Bus cost 

 Avg Std. Dev. Avg Std. Dev. Avg Std. Dev. 
1 1161.85 55.17 2.1667 0.0976 2.1652 0.0536 
2 1168.71 53.33 2.1543 0.0940 2.1584 0.0516 
3 1169.90 52.81 2.1523 0.0931 2.1572 0.0511 
4 1163.92 55.94 2.1630 0.0994 2.1632 0.0545 

 

Figure 5: Dynamics of number of bus users 

B. Travelers’ Specialization 

Figure 6 shows the specialization of travelers based on 
their choices of mode in every 10-iterations. All-times car users 
always chose car in 10 iterations and all-times bus users always 
chose bus. There are also many mixed users who chose both car 
and bus during 10 iterations. At the equilibrium point, the 
number of bus users is around 1,200, with 1,000 all-times bus 
users. The number of car users is about 2,900, with 2,750 
all-times car users. It can be inferred that travelers are mostly 
specialized in either a car user or a bus user, leaving a small 
number of mixed users. 

C. Emergence of Choice Stability 

Traveler’s specialization of mode changes usually from a 
car user to a mixed user and then to a bus user, or reversely from 
a bus user to a mixed user and then to a car user. Even though a 
traveler has a tendency to become a car user or a bus user in 
every generation, sometimes an interaction with other travelers 
make him change into a mixed user, following the change of his 
FSM due to crossover of chromosomes with neighbors. Figure 
7 illustrates the change of a traveler’s choices of mode from 
generation to generation, which have finally resulted in an 
all-times bus user or car user. 
D. Effect of Travelers’ Sensitivity at d=0.05 

We found an interesting phenomenon when the value of 
parameter d is at 0.05, which means travelers are 2 times more 
sensitive to payoff difference than d=0.1. In all four runs, the 
system converged to other equilibrium points (see Figure 8), 
where the number of bus users in all runs is higher than the user 
equilibrium point (dashed line in the figure).  

Further discussions will be focused on Run 2. An 
emergent process started from an outbreak of number of bus 
users at iteration 8 in generation 31 (see Figure 9). The outbreak 
started with decreasing bus users to a lower level than the user 
equilibrium point, so that travel time increased and payoff for 
all users decreased, but payoff of bus was slightly higher than 
car. Some travelers observed this situation and at the same time 
they chose bus, resulting in a sudden increase of bus users. 

Figure 6: Number of travelers in each level of chosen mode 

 

 
Figure 7: A traveler’s changes of choice: (a) finally became a 

bus user and (b) finally became a car user 
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Figure 8: Dynamic of number of bus users at d=0.05 

Figure 9: Dynamics of number of bus users at gen. 29-33 

Figure 10: (a) Car payoff PA and (b) bus payoff PB at gen. 29-33 

The huge increase of bus users increased the payoff of car 
and bus (see Figure 10), with higher level of increase for car 
payoff than bus payoff, since car cost has stiffer curve than bus 
cost. At that time, travelers who had car as their choice received 
high increase of expected payoff as well as travelers with bus as 
their choice. They observed that the payoff of the chosen mode 
was much higher than the other one, so that they used input 
symbol 1 or 5 in their FSMs and continued to use car or bus. If 
majority of travelers experienced those processes, then the 
system converged to another equilibrium point. 

Figure 11 shows changes of expected payoffs of a traveler 
before and after the outbreak of cooperation. From the 
beginning of generation 29 until beginning of generation 31, 
the traveler mostly chose car, so that the changes of expected 
payoffs are mostly on car. But during three iterations before the 
outbreak, he chose bus and the outbreak pushed his choice into 
bus only.  

The changes of expected payoffs of all travelers can be 
seen in Figure 12. Fundamental changes happened during 
generation 30-40’s as a result of the cooperation outbreak. 
Starting from generation 31, travelers split off into two groups, 
a group of car users and a group of bus users. 

Figure 11: Expected payoffs (UA,UB) of a traveler at gen. 29-33  

 

 

 

 
Figure 12: Scatter plots of travelers’ expected payoffs at d=0.05 

The kind of equilibrium found at d=0.05 is called as 
‘deluded equilibrium’ [11][12]. If travelers expect that the 
payoff of a mode is much higher than another one, then they 
will continue to choose the mode again. A deluded traveler 

(a) (b) 

 



cannot acquire information about the choice of another mode 
anymore, so that the delusion cannot be dissolved. Even though 
the actual payoff of car is higher than payoff of bus, travelers 
continue to use car, because in their perception the expected 
payoff of bus is much higher than car.  

If delusion continues, travelers form a habitual behavior 
and they totally exclude other choice of mode from 
consideration. When all of them are frozen to their choices, the 
equilibrium becomes a ‘frozen equilibrium’ [11]. 

3. SIMULATION MODEL:  
MODELLING BY BELIEFS AND EXPECTATIONS 

The second model also consists of traveler and transportation 
model (see Figure 13).. The transportation model is the same as 
the first model, but in the traveler model, travelers decide a 
mode based on the rules of expectations, which shows 
traveler’s belief about the influence of his action on other 
members of the group  
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 Figure 13: Multi-agent simulation model by beliefs and 
expectations 

3.1  Transportation model 

Please see Section 2.1. 

3.2 Traveler model 

A. Decision making rules: expectations’ curve 

Behavior of a traveler is represented by an expectations 
curve, which shows traveler’s belief about the influence of his 
action on others [4]. Two classes of beliefs were considered in 
the model: bandwagon expectations and opportunistic 
expectations [7]. For each type, there are three types of curve 
that represent agents’ level of expectations: pessimistic, normal 
and optimistic. In this paper, we deal with only the bandwagon 
expectations (see Figure 14). A probability of cooperating 
represents a degree of an individual’s beliefs about the 
influences of his action on others; and a criteria, which lies on 
45 degree of straight line and the value is equal to the fraction 
of cooperation, represents a base of beliefs. 

Figure 15 shows decision making processes of a traveler. 
Initially, travelers are given a type of curve and a randomly 
chosen mode. Travelers make decision at an asynchronous time 
so that only 10% of them observe current level of cooperation 
and make a choice at the same time. Another 90% continue to 
use their current mode of commuting. Based on travel mode 

they chose, travelers receive payoffs and accumulate them. 
After 10 iterations, the accumulation of payoffs is used as the 
fitness of agents’ type of curve. 

 
Figure 14: Types of bandwagon expectations curve 

(from left to right; pessimistic, normal and optimistic. x axis: 
fraction of cooperation, y axis: probability of cooperation) 
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Figure 15: Decision making of a traveler 

B. Interaction among agents: group-based interaction 

A possibility of incorporating employer-based TDM 
measures to solve a social dilemma of travel mode choice is 
studied by introducing a group-based interaction, where a 
group represents employees of a company. We also need this 
grouping to make travelers interact each other in order to 
acquire adaptive behavior by local interactions. A traveler 
interacts with travelers of the same company he works in a 
torus plane so that eight neighbors around him influence his 
choice of behavior. Each group is independent from others so 
that there is no interaction among members of different 
companies. Assuming limited information, a traveler knows 
only his own payoff information and types of expectations 
curve of eight surrounding neighbors.  

C. Evolution of expectations by imitation 

We apply an imitation game based on social learning 
mechanism in order to evolve expectations’ curve of each 
traveler. Two kinds of mechanism are used: payoff-biased 
transmission and conformist transmission [5]. The relative 
strength of each transmission depends on the strength of 
conformist (α) in a traveler’s psychology [6]. For each traveler, 
there are α probability to use conformist transmission and 
(1–α) probability to use payoff-biased transmission.  

3.3 Simulation Results and Discussions 

A number of agents, exactly 4096, are assigned into 16 
homogeneous groups with size 256. Each agent has a type of 



bandwagon expectations curve (pessimistic, normal or 
optimistic), which is assigned randomly giving the same 
proportion of agents for every type of expectations’ curve. We 
run a simulation with various initial levels of cooperation, 
ranging from 0.2 to 0.8 with increment 0.1. The strength of 
conformist transmission (α) ranges from 0.0 to 0.4. Simulations 
are run up to 100 generations with 10 iterations per generation.  

A. Social learning mechanism by payoff-biased transmission 
(α = 0.0) 

The simulation resulted in an equilibrium point for initial 
level of cooperation from 0.2 to 0.7 (see Figure 16). According 
to the cost functions defined before, the number of bus users at 
the equilibrium point should be around 1200 or equal to 30% of 
travelers. High initial level of cooperation (0.8) resulted in full 
level of cooperation (all travelers chose bus) because for all 
types of curve, the probability of cooperating at a fraction of 0.8 
was higher than the criteria (see Figure 14), so that all travelers 
suddenly cooperated.  

Observing which kinds of type exist at the end of simulation, 
all three types of curve still exist as seen in Figure 17. 
Pessimistic type was chosen by the highest number of members, 
around 2500 travelers. Followed by normal type with around 
1000 members and the rest is optimistic type.  

B. Dynamics within a group at α = 0.0 

Dynamics of behavioral change within a group can be seen 
in Figure 18, which is taken from a simulation run with initial 
level of cooperation 0.5. The number of bus users is taken from 
the average value of 10 iterations in one generation. Within 
Group 1, all members finally chose car. Pessimistic behavior 
dominates the group with around 200 agents. Small numbers of 
normal and optimistic agents could not increase the level of 
cooperation and furthermore they chose defection. 

The situation in Group 7 is quite different. Group 7 shows 
the role of optimistic agents to elicit cooperation, since they 
acted alone as altruist agents following the fall of normal agents. 
They could maintain the level of cooperation and increased to 
the maximum level, after some pessimistic agents changed type 
to optimistic one.  

C. Combining payoff-biased transmission and conformist 
transmission (α=0.1 - 0.4) 

The strength of conformist is represented by a value of α. 
High value means high probability of using conformist 
transmission for an agent. For α=0.1 and 0.2, the dynamics are 
only slightly different from α=0.0, so that we will focus on 
α=0.4 (see Figure 19). The dashed line is the user-equilibrium 
line. At α=0.4, a higher level of cooperation than the user 
equilibrium point could be reached for all initial levels of 
cooperation. 

Low initial level of cooperation (0.2) gave a quite different 
behavior, because in the beginning the cost of bus was lower 
than car, so that most of users preferred bus to car. The level of 
cooperation suddenly increased and the conformist 
transmission spread cooperative behavior to other travelers. If 
the strength of conformist were strong enough then cooperative 
behaviors could spread fast to make all group members 
cooperate and stabilize cooperation within the group, without 
giving payoff-biased transmission a chance to push the global 

cooperation to the equilibrium point. It can be seen that low 
initial level of cooperation 0.2 gave higher convergence value 
than initial level 0.3, 0.4, 0.5, and 0.6. 

Figure 16: Dynamics of cooperation level (α=0.0) 

 
Figure 17: Type of curves at end of simulation (α=0.0) 

  
Figure 18: Dynamics of behaviors within a group (α=0.0) 

 
Figure 19: Dynamics of behaviors within a group (α=0.4) 
Middle to high initial value of cooperation (0.4-0.7) had 

different processes. In that range, the higher the initial level, the 
higher is the convergence point. Let us focus on the case of 
α=0.4. In the beginning, cooperation increased suddenly 
because of the existence of optimistic agents who chose 
cooperation, since the initial fraction of cooperation was higher 
than the criteria of cooperation. They were followed by some 
normal agents who later also cooperated, after observing a 
certain level of cooperation which was higher than their criteria. 
Finally, payoff-biased transmission that has probability 0.6 
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(1-α), had pushed the cooperation level to lower state before 
the system converged. High initial level of cooperation (0.8) 
favored cooperation for all types of expectations so that full 
level of bus users was achieved. 

D. Dynamics within a group at α = 0.4 

Early dynamical processes within a group are complex and 
important to determine the succeeding processes and ending 
results of simulation (see Figure 20). Conformist transmission 
helped the spread of a type of expectations’ curve and later the 
group would become homogeneous with an only type of curve. 
In some groups, optimistic expectations may dominate (eq. 
Group1). But in some other groups, pessimistic or normal 
expectations may also dominate (eq. Group 2). 

   
Figure 20: Dynamics of behaviors within a group (α=0.4) 

These results prove that the conformist transmission might 
be able to stabilize cooperation when it is strong enough 
compared with payoff-biased transmission. By using a complex 
process of interactions among agents, a combination of 
payoff-biased and conformist transmissions, and also other 
emergent components, a high level of cooperation can be 
achieved. 

4. CONCLUSION 

Simulation models of commuters’ learning on choosing 
mode were built and applied to examining behavior of 
commuters. Both models showed that a user equilibrium point 
as predicted by conventional analysis can be reached and 
stabilized, by interaction process among travelers and by 
behavioral change process of each traveler, without any central 
or external rule that organizes the objective function of the 
system. The equilibrium is a result of self-organization and 
complex process among travelers.  

At the equilibrium point, there exist car users, bus users and 
mixed users. Most of travelers are specialized in either a car 
user or bus user, leaving a small number of mixed users.  

The first model revealed that an outbreak situation might 
produce other equilibrium points, in addition to the user 
equilibrium point, when travelers were very sensitive to payoff 
differences. In these new kinds of equilibrium, which are 
known as ‘deluded’ equilibrium and ‘frozen’ equilibrium, 
higher level of cooperation could be achieved and stabilized. 
The outbreak itself, as an emergent process of the system, made 
travelers perceive an excessive increase of payoffs and form a 
habit of choosing only either car or bus until the end of the 
simulation.  

The second model shows that cooperation level within a 
group is highly related to the existence of type of expectations. 
Domination of pessimistic agents would make a group 
converges to all defection and the appearance of optimistic 
agents is very important to pioneer cooperation within a group.  

The model revealed that some insightful results could be 
obtained, such as the conditions that make cooperation as a 

possible outcome. They are group-based interactions, limited 
information, and conformist transmission. If there exists only 
payoff-biased transmission (α=0.0), then a user equilibrium 
point is reached. But, if there are a strong conformist 
transmission (α=0.4) and an emergent phenomenon in the 
system, they may favor cooperation and resolve the dilemma of 
travel mode choice. This gives insight to the possibility of 
solving the social dilemma by incorporating an employer-based 
Travel Demand Management (TDM) measure. 

In general, this research demonstrated the capability of 
agent-based approaches to simulate dynamics of travel mode 
choice under a social dilemma situation and to reveal some 
findings, which are undisclosed by conventional analyses. 

The results of both models showed that travel behaviour has 
a dynamic nature as the results of learning process of each 
individual commuter. They also gave a new perspective on 
changing the paradigm of modelling travel behaviour of 
commuters, from a conventional and static analysis into a more 
dynamic analysis by using agent-based approaches 
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