建設構造研究室 馬場 道彦

指 導 教 官 岩崎 英治

長井 正嗣

1. はじめに

有限要素法では,通常,細長い部材には,はり要 素を薄肉部材には板・シェル要素が使われている. これは,細長い部材には断面剛の仮定や単軸応力状 態,薄肉部材には板厚不変の仮定や平面応力状態と いう,力学特性や応力状態を部材形状に合わせ定式 化した要素である.また,これら以外の塊状の部材 にはソリッド要素が用いられる.この要素は他の要 素に比べ,定式化が容易であるため他の細長い部材 や薄肉部材にも用いることのできる汎用性のある要 素である.しかし,ソリッド要素が他の部材に用い られないのは,要素分割を非常に多くしなければ, 剛性を過大評価し精度が極端に低下してしまうせん 断ロッキングが生じるためである¹⁾.

2.背景と目的

そこで当研究室での既往の研究では,直方体要素 を考え,せん断ロッキングや単軸応力状態,平面応 力状態での精度低下を緩和したひずみと応力式を提 案し,さらに,任意形状でのソリッド要素へと拡張 を行った²⁾³⁾.この要素は従来に比べ,高精度の解 を得るとともに単軸応力状態や平面応力状態を表現 でき,断面内や板厚方向に分割を行うと,さらに詳 しく対象部材の状態を調べることができる.しかし, この要素は,任意形状における定式化が煩雑である ため,非線形解析へ拡張するとなると複雑で困難と なる.また,非常に薄い部材においては,要素の形 状が歪んでいると精度が悪くなるという問題が残っ た.

そこで本研究では,既往の要素の特性を持ちつつ も,要素の定式化を簡略化し,同程度かそれ以上の 精度で解析のできる要素の開発を行うこととする. また,非常に薄く歪んだ要素においてでもせん断口 ッキングを十分に緩和し,精度の向上を図る.

3. 要素の定式化における簡略化

3.1 簡略方法

直方体のような歪みがない要素では, ひずみや応 力式は, 簡単に表すことができる.しかし, 歪んだ 要素形状では, ひずみ式中の項が多くなり, 剛性行 列の作成が, 非常に複雑になってしまう.そこで, 任意形状でのひずみや応力を軸に関して級数展開を 行い, 簡略化のために, 直方体要素と同じ軸に関す る項だけを残し, 他の項は削除することにする.そ こで以下に示す式は, 薄肉部材において板厚方向を z軸にした場合に精度の向上が期待できるようにし たひずみと応力式である.

$$\begin{aligned} \varepsilon_{xx} &= \varepsilon_{xx}^{(0)} + \eta \varepsilon_{xx}^{(2)} + \zeta \varepsilon_{xx}^{(3)} + \eta \zeta \varepsilon_{xx}^{(23)} \\ \varepsilon_{yy} &= \varepsilon_{yy}^{(0)} + \xi \varepsilon_{yy}^{(1)} + \zeta \varepsilon_{yy}^{(3)} + \zeta \xi \varepsilon_{yy}^{(31)} \\ \varepsilon_{zz} &= \varepsilon_{zz}^{(0)} + \xi \varepsilon_{zz}^{(1)} + \eta \varepsilon_{zz}^{(2)} + \xi \eta \varepsilon_{zz}^{(12)} \\ \varepsilon_{xy} &= \varepsilon_{yz}^{(0)} + \xi \varepsilon_{xy}^{(1)} + \zeta \varepsilon_{yz}^{(3)} + \zeta \xi \varepsilon_{yz}^{(31)} \\ \varepsilon_{yz} &= \varepsilon_{zx}^{(0)} + \eta \varepsilon_{zx}^{(2)} + \zeta \varepsilon_{zx}^{(3)} + \eta \zeta \varepsilon_{zx}^{(23)} \\ \varepsilon_{zx} &= \varepsilon_{zx}^{(0)} + \eta \varepsilon_{zx}^{(2)} + \zeta \varepsilon_{zx}^{(3)} + \eta \zeta \varepsilon_{zx}^{(23)} \\ \sigma_{xx} &= C_{1} \varepsilon_{xx}^{(0)} + C_{2} \varepsilon_{yy}^{(0)} + C_{2} \varepsilon_{33}^{(0)} \\ &+ \zeta (C_{3} \varepsilon_{xx}^{(3)} + C_{4} \varepsilon_{yy}^{(3)}) + E(\eta \varepsilon_{xx}^{(2)} + \eta \zeta \varepsilon_{xx}^{(23)}) \\ \sigma_{yy} &= C_{2} \varepsilon_{xx}^{(0)} + C_{1} \varepsilon_{yy}^{(0)} + C_{2} \varepsilon_{33}^{(0)} \\ &+ \zeta (C_{4} \varepsilon_{xx}^{(3)} + C_{3} \varepsilon_{yy}^{(3)}) + E(\xi \varepsilon_{yy}^{(1)} + \zeta \xi \varepsilon_{yy}^{(31)}) \\ \sigma_{zz} &= C_{2} \varepsilon_{xx}^{(0)} + C_{2} \varepsilon_{yy}^{(0)} + C_{1} \varepsilon_{33}^{(0)} \\ \sigma_{xy} &= 2G(\varepsilon_{xy}^{(0)} + \xi \varepsilon_{xy}^{(1)} + \zeta \varepsilon_{yz}^{(3)} + \zeta \xi \varepsilon_{yz}^{(31)}) \\ \sigma_{yz} &= 2G(\varepsilon_{yz}^{(0)} + \xi \varepsilon_{yz}^{(1)} + \zeta \varepsilon_{yz}^{(3)} + \eta \zeta \varepsilon_{zx}^{(23)}) \end{aligned}$$

ここで, $\varepsilon_{ij}^{()}$ はそれぞれの軸や面内に関するひずみの平均値としており,以下の例のようにおく.

$$\varepsilon_{ij}^{(0)} = \varepsilon_{ij}(0,0,0)$$
 (2-1)

$$\varepsilon_{ij}^{(1)} = \frac{\sqrt{3}}{2} \left\{ \varepsilon_{ij} \left(\frac{1}{\sqrt{3}}, 0, 0 \right) - \varepsilon_{ij} \left(-\frac{1}{\sqrt{3}}, 0, 0 \right) \right\}$$
(2-2)

$$\varepsilon_{ij}^{(23)} = \frac{3}{4} \left\{ \varepsilon_{ij} \left(0, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right) - \varepsilon_{ij} \left(0, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}} \right) - \varepsilon_{ij} \left(0, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right) + \varepsilon_{ij} \left(0, -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}} \right) \right\}$$
(2-3)

図1 軸や面内に関する変化量を表す参照点

面内に関するひずみを表しており,図1のよう な参照点の変化量から平均値を求めている.

これと同じ方法で細長い部材用のひずみと応力式は,はりの軸方向をx軸とした場合に以下の式となる.

$\boldsymbol{\varepsilon}_{xx} = \boldsymbol{\varepsilon}_{xx}^{(0)} + \eta \boldsymbol{\varepsilon}_{xx}^{(2)} + \zeta \boldsymbol{\varepsilon}_{xx}^{(3)} + \eta \zeta \boldsymbol{\varepsilon}_{xx}^{(23)}$
$\varepsilon_{yy} = \varepsilon_{yy}^{(0)} + \xi \varepsilon_{yy}^{(1)} + \zeta \varepsilon_{yy}^{(3)} + \zeta \xi \varepsilon_{yy}^{(31)}$
$\varepsilon_{zz} = \varepsilon_{zz}^{(0)} + \xi \varepsilon_{zz}^{(1)} + \eta \varepsilon_{zz}^{(2)} + \xi \eta \varepsilon_{zz}^{(12)}$

$$\begin{split} \varepsilon_{xy} &= \varepsilon_{xy}^{(0)} + \eta \varepsilon_{xy}^{(2)} + \zeta \varepsilon_{xy}^{(3)} + \eta \zeta \varepsilon_{xy}^{(23)} \\ \varepsilon_{yz} &= \varepsilon_{yz}^{(0)} + \xi \varepsilon_{yz}^{(1)} + \eta \varepsilon_{yz}^{(2)} + \zeta \varepsilon_{yz}^{(3)} + \zeta \xi \varepsilon_{yz}^{(31)} + \xi \eta \varepsilon_{yz}^{(12)} \\ \varepsilon_{zx} &= \varepsilon_{zx}^{(0)} + \eta \varepsilon_{zx}^{(2)} + \zeta \varepsilon_{zx}^{(3)} + \eta \zeta \varepsilon_{zx}^{(23)} \\ \sigma_{xx} &= C_{1} \varepsilon_{xx}^{(0)} + C_{2} \varepsilon_{yy}^{(0)} + C_{2} \varepsilon_{33}^{(0)} \\ &\quad + E(\eta \varepsilon_{xx}^{(2)} + \eta \zeta \varepsilon_{xx}^{(23)}) \\ \sigma_{yy} &= C_{2} \varepsilon_{xx}^{(0)} + C_{1} \varepsilon_{yy}^{(0)} + C_{2} \varepsilon_{33}^{(0)} \\ \sigma_{zz} &= C_{2} \varepsilon_{xx}^{(0)} + C_{2} \varepsilon_{yy}^{(0)} + C_{1} \varepsilon_{33}^{(0)} \\ \sigma_{zy} &= 2G(\varepsilon_{xy}^{(0)} + \eta \varepsilon_{xy}^{(2)} + \zeta \varepsilon_{xy}^{(3)} + \eta \zeta \varepsilon_{xy}^{(23)}) \\ \sigma_{yz} &= 2G(\varepsilon_{yz}^{(0)} + \xi \varepsilon_{yz}^{(1)} + \eta \varepsilon_{yz}^{(2)} + \zeta \varepsilon_{yz}^{(3)} \\ &\quad + \zeta \xi \varepsilon_{yz}^{(3)} + \eta \zeta \varepsilon_{zx}^{(23)}) \\ \sigma_{zx} &= 2G(\varepsilon_{zx}^{(0)} + \eta \varepsilon_{zx}^{(2)} + \zeta \varepsilon_{zx}^{(3)} + \eta \zeta \varepsilon_{zx}^{(23)}) \\ \end{split}$$

ここで,先ほどの薄肉部材用のひずみと応力式を 用いた定式化の要素を'Plate1',細長い部材用を 'Beam1'とする.また,薄肉部材・細長い部材に おいて軸を指定せずに精度向上を目的とした場合の ひずみと応力式を用いた要素を;Plate2 *Beam2' とする.

記号	要素の種類	軸指定
Plate 1	本研究で開発した	あり
Plate 2	板・シェル要素	なし
Beam 1	本研究で開発した	あり
Beam 2	はり要素	なし
Plate 2-old	既往の	あり
Plate 1-old	板・シェル要素	なし
Beam 1-old	既往の	あり
Beam 2-old	はり要素	なし

表1 既往の要素と改良要素

表1に示す要素は,本研究で開発した要素と既往 の要素を表している.'-old'のついた要素が,本研 究室で開発した要素であり,新しい要素と同じ目的 で精度を向上させた要素である.しかし,正確な定 式化を行っているために,剛性行列の誘導が複雑に なっている.

図2 正方形板 (等分布荷重 q=1N/cm²)

図3 分割モデル

板・シェル部材用のモデルとして図2のような四 辺単純支持された正方形板とし,上縁に等分布荷重 q = 1N/cm² を作用した場合を考える.板厚 2.0,1.0,0.1,0.01cmの4種類とポアソン比0.0,0.3, 0.499の3種類を考え,さらに1/4領域においては 図3のようなcの値を変化させることで要素形状を 決定させるモデルとする.板中央での応力とたわみ を表1の8つの要素で調べた.

図4 板厚 0.1, 1.0cm のときのたわみと応力(=0.3)

ここで t/a とは, 板厚 t を正方形板一辺の長さ a で割った値を示している.ここにポアソン比が 0.3 で板厚が 1.0cm のときのたわみと応力を示す.y軸 はMindlinの板理論による理論値で正規化している ので,1が正解値となっている.

図4より,板厚が薄い場合には Beam1 要素と Beam1-old 要素の精度は悪いことがわかる.他の要 素で,たわみの精度は新しい要素と既往の要素とで は,差がなく同程度の精度であるといえる.応力で は,既往の要素に比べ,すべての新しい要素におい て要素形状の歪みが大きくなるにつれて精度低下が 緩やかになっていることがわかる.また,精度が良 い要素は'Plate 1''Plate 2'要素の順であること がわかる .また ,要素形状の歪みがない c=0.0 では , 要素が直方体であることから , 新しい要素と既往の 要素とでは , 式が同じとなるため , 精度が等しくなっている .

4.薄く歪んだ要素での精度低下の改善4.1 精度低下の改善方法

$$\left\{ \begin{array}{l} \varepsilon_{yz} = \varepsilon_{yz}^{(0)} + \alpha \xi \varepsilon_{yz}^{(1)} + \zeta \varepsilon_{yz}^{(3)} + \zeta \xi \varepsilon_{yz}^{(31)} \\ \varepsilon_{zx} = \varepsilon_{zx}^{(0)} + \alpha \eta \varepsilon_{zx}^{(2)} + \zeta \varepsilon_{zx}^{(3)} + \eta \zeta \varepsilon_{zx}^{(23)} \\ \sigma_{yz} = 2G(\varepsilon_{yz}^{(0)} + \alpha \xi \varepsilon_{yz}^{(1)} + \zeta \varepsilon_{yz}^{(3)} + \zeta \xi \varepsilon_{yz}^{(31)}) \\ \sigma_{zx} = 2G(\varepsilon_{zx}^{(0)} + \alpha \eta \varepsilon_{zx}^{(2)} + \zeta \varepsilon_{zx}^{(3)} + \eta \zeta \varepsilon_{zx}^{(23)}) \right\}$$
(4)

上記に示す式は, 'Plate 1 '要素のせん断ひずみ とせん断応力を表している.この式中の が乗じて いる項を削除することで精度を向上させることが可 能であることがわかったが,削除するとゼロエネル ギーモードが発生する可能性が生じる.これは,こ の変形モードがひずみエネルギーに寄与しなくなる ため,剛性行列が特異となり解が求められなくなる ことで,解析対象の支持条件や分割の仕方によって 発生することがわかっている.そこで,この項にパ ラメータを乗し,値を調節することで精度向上を図 ることにする.

4.2 数値解析

モデルは,3.2章と同じモデルを用い,支持条件は,二辺固定二辺自由支持としている.比較を行うために,自由端の隅各部でのたわみと板中央での応力を調べた.

図5 板厚ごとの自由端隅角部のたわみ(=0.3)

ここにポアソン比が 0.3 のときの板厚ごとのたわ みを示す.このグラフから板厚が薄く要素形状の歪 みが生じると精度が極端に悪くなっていることがわ かる.また,パラメータ にゼロ用いた場合,つま り削除した場合には精度が向上しているが,削除し なくとも =t/a 程度の値でゼロに相当する精度が出 せることがわかった.

- 5.既往の要素との比較
- 5.1 比較対象

記号	要素の種類
Full	完全積分による要素
Reduce	低減積分による要素
Select	せん断剛性を低減積分による要素
Koh1	KohとKikuchiの要素1
Koh2	KohとKikuchiの要素2
Liu	Liu,HuとBelytschkoの要素

表2 従来の要素

本研究で開発した要素の適用性を検討するために表 2に示す既往の6種類の要素を用いて数値計算を行う.

Full要素は完全積分(2×2×2点 Gauss 積分)によ るアイソパラメトリック要素で,せん断ロッキング を避けられない.Reduce要素は低減積分(1×1×1 点 Gauss 積分)による要素でせん断ロッキングを緩 和するがゼロエネルギーモードを含むため剛性行列 が特異になることがある.Select は,せん断剛性の みを低減積分した要素である.Koh1要素とKoh2要 素は,方向別次数低減積分法による要素で,3 つの パラメータを導入し,組み合わせによってせん断ロ ッキングを緩和しており,Koh1要素は細長い部材に Koh2要素は薄肉部材に適用するようにパラメータ を決定している.Liu要素は,要素座標系を導入し た選択的次数低減積分法となっている.

5.2 数値解析 板部材

モデルは,3.2での図2の正方形板モデルを用い ている.ただし,分割パターンは対称性を考慮し, 1/4領域において x-y 面内を2×2,4×4,8×8,16 ×16の要素分割を行い,さらに板厚方向に1,2,4分 割の計12種類の分割パターンで行った.比較検討を 行うために,板中央でのたわみと応力_{xx}, _{xy}を調 べた.

図6 板厚0.001cm での板中央でのたわみ

ここにポアソン比が0.3 で板厚が0.001cm のときの たわみを示す.各要素にはx-y 面内の4 種類の分割 数による値が板厚方向の分割数順に並び計12個の 値が並んでいる.

Full 要素ではせん断ロッキングが生じ,精度が悪 い.Reduce 要素は板厚方向に1分割であると剛性行 列が特異になり,解が得られていない.しかし, Plate1 要素と Plate2 要素は分割数が少なくとも精 度よくせん断ロッキングを緩和していることがわか る.

5.3 数値解析 はり部材

図7 片持ち梁

モデルは図7に示す片持ち梁を用いており,荷重 は,鉛直荷重,水平荷重,ねじり荷重の3種類を作 用させた.分割パターンは,表3に示す21通りで行っている.比較検討を行うために,それぞれの荷重に対して,固定端から200cmでの応力と自由端での変位を調べた.

ここに鉛直荷重が作用したときの各要素での応力

Model	1	2	3	4	5	6	7	8	9	10	
х	5	10	20	5	10	20	5	10	20	5	
У	1	1	1	2	2	2	1	1	1	2	
Z	1	1	1	1	1	1	2	2	2	2	
Madal	4.4	10	12	1/	15	16	17	18	10	20	21
woder		12	15	14	15	10	17	10	13	20	21
x	10	20	5	10	20	5	10	20	5	10	20
x y	10 2	20 2	5 4	10 4	20 4	5 1	10 1	20 1	5 4	10 4	20 4
x y z	10 2 2	20 2 2 2	13 5 4 1	10 4 1	20 4 1	5 1 4	10 1 1 4	20 1 4	13 5 4 4	10 4 4	20 4 4

図8 片持ち梁における x=200 での応力 🐰

_{xx}を示している.各要素のx軸には表3に示す分割数順で計21個並べている.

Full 要素は前節同様, せん断ロッキングが生じ, 精度が悪い.Koh2要素も同様に1方向に1分割があ る場合に解が特異になっている.しかし,本研究で の4種類の要素全てにおいて分割数が少なくても精 度よく,解析が行えていることがわかる.

6. 結論

これらの結果から以下のような結論が得られる.

- ひずみや応力を座標軸に関して級数展開する簡
 略な定式化による本方法でも,既往の要素に比べ,同程度かそれ以上の精度の解が得られることが明らかになった.
- ・ 数値計算により, Plate 1 要素でのパラメータ
 には,板厚 t と幅の比 t/a 程度の大きさの値を設定することでゼロエネルギーモードを発生させず, せん断ロッキングを緩和できることがわかった.
- 4 種類の要素の精度を,薄肉部材と細長い部材 について確認した結果,どちらの部材も 'Plate1'要素が精度よく解析できることが分 かった.

参考文献

- 1) 鷲津久一郎,宮本博,山田嘉昭,山本善之, 川井忠彦:有限要素法ハンドブック,培風館 1981
- 2) 岩崎英治,林正:骨組構造解析に適用可能な 低次ソリッド要素の開発土木学会論文集 No.577/I-41.pp.231-243.1997.10.
- 3) 岩崎英治,林正:はり部材や板シェル部材に 適用可能なソリッド要素の開発,計算工学講 演会論文集(日本計算工学会).Vol.2. pp431-434.1997.5