DEVELOPMENT OF IN-SITU SHEAR APPARATUS (原位置せん断試験装置の開発)

地盤工学研究室 Chad Alexander V. Carretas 指導教官 豊田浩史

1. はじめに

原位置で強度定数が直接計測できれば、 より地盤の自然な状態を反映した適切な設 計を行うことができる。そのためには原位 置で直接、せん断試験を行う必要がある。 そこでボーリング孔の孔底を利用し、簡易 で直接、せん断強度を測定できる方法を検 討した。本研究では孔底でせん断試験を行 う方法に着目し、孔内ねじりせん断試験を行 う方法に着目し、孔内ねじりせん断試験(BTST Apparatus)を開発した。孔底でせ ん断試験を行うための条件を、室内試験(一 面せん断試験とリングせん断試験)の結果 と比較することにより BTST のせん断機構 について検討した。供試体には力学特性の 明らかな乾燥豊浦砂およびカオリン粘土を 用いた。

2. 供試体

豊浦砂は、内径 100mm のモールド内で、 振動締固めにより密度大・中・小の3種類 に調整し、それぞれ定圧と定体積せん断試 験を行った。カオリン粘土の場合は、含水 比 100%のスラリーを脱気して、ベロフラ ム シリンダーに入れ、所定の鉛直圧で予 圧密をした。過圧密比を調整するため、試 験を開始する前は、所定の鉛直圧で一次圧 密を行い、数時間たった後 100KPa まで除荷 して、せん断を開始しました。

3. 豊浦砂

3.1 試験概要

用いたせん断機構は、中空型と、全面が

せん断刃で円周部に拘束リングを付けたものをそれぞれ Type A、Type Bとする。

3.2 結果

図 1 は豊浦砂の定体積試験の結果である。 Type A の場合、ピーク強度。が低く、残留 強度に関しては、ピーク強度の半分まで大 きな減少を示している。ピーク強度に関し ては、拘束リングをつけることにより、Type B では適当な値まで上昇した。また、ピー クから残留強度までの強度の減少量も小さ くなった。これらの特徴を一面せん断試験 からの結果と比較すると、ピーク強度が大 きく、残留強度までの減少が少ない Type B の場合がよく一致していると判断できる。 一方、定体積試験の場合図2に示すように、 Type A の応力経路は、破壊線に沿うダイレ ーションの特徴が見られなかった。そこで 拘束リングを取り付けることで、図3のよ うに、Type B では密度による経路の違いが 確認でき、破壊線からずれるような挙動が なくなり、ダイレーションもはっきり捉え られるようになった。これらの特徴を図4 に示すリングせん断試験からの応力経路に 比較すると、定体積試験でも、Type Bの方 が室内試験と類似した結果が得られること が分かった。

4. カオリン粘土

4.1 試験概要

カオリン粘土では、中空型のせん断機構 を用い、定圧試験では3つの加圧密比(0CR = 6、4、2)と正規圧蜜の計4つの場合で試 験を行った。定体積試験では OCR=6、3、1 に調整し試験を行った。

4.2 結果

図5と図6はカオリン粘土を用いた定圧 試験の結果である。図5は横軸にせん断変 位、縦軸にせん断応力をとったもので、図 6 は横軸にせん断変位、縦軸を逆さにし鉛 直変位をとったものである。図5に示すよ うに、OCR=1 のときは、最大せん断強度は なく、変位が増加するにつれ応力が徐々に あがって最後は残留強度に落ち着くことが 見られる。OCR=2 の場合も、同じような挙 動が見られる。OCR=4 と OCR=6 では、ピー ク強度は出ており、また全体を見ると、過 圧密比の大きさに関係なく、一定の残留強 度に落ちていくという粘性土の特徴が見ら れる。図7はリングせん断試験で、図8は BTST でのそれぞれで定体積試験を行ったと きの応力経路である。図8を見ると、OCR=1

のとき、せん断中せん断応力が増加すると、 鉛直応力が減少する一方である。これは粘 土が軟らかかったため、せん断刃がどんど ん供試体の中へともぐっていた。OCR=3 で は、少し粘土が固くなったため同じような 強度が見られない。そして OCR=6 の場合は せん断応力の増加に伴い、鉛直応力も少し ずつ増加し、破壊線に至った。3 種類の場 合とも過圧密粘土の特徴を良く表している。

5. 図表

5.1 豊浦砂

図1:一面せん断試験とBTST での定圧試験の比較

図 2:BTST での応力経路(Type A)

図 3:BTST での応力経路(Type B)

図4:リングせん断試験での応力経路

5.2 カオリン粘土

図 5: せん断変位 せん断応力関係図(BTST、定圧試験) 図 6: せん断変位 鉛直変位関係図(BTST、定圧試験)

図 8:BTST での応力経路(定体積試験)

参考文献

- 1) 酒井直樹、豊田浩史、島内哲哉、中村公一、原位置孔内ねじりせん断試験機の開発その 1、 第20回土木学会関東支部新潟会研究調査発表会,2002。
- 2) 酒井直樹、豊田浩史、島内哲哉、中村公一、原位置孔内ねじりせん断試験機の開発その 2、 第20回土木学会関東支部新潟会研究調査発表会, 2002。