模型実験を用いた地中音による地すべり予測に関する基礎研究

建設設計工学研究室 上畑 吉紀 指導教官 宮木 康幸

<u>1.はじめに</u>

現在、地すべりや崩壊の危険性がある斜面の監視 には様々なシステムが利用されており、わが建設設 計研究室でも CCD カメラを用いた斜面監視システ ムを開発している。しかし、このシステムの短所と して、監視の対象が斜面の地表のみであることが挙 げられる。そこで、斜面監視の新たな手法として、 斜面の移動が地表で観測される前の段階で、地中の 土構造が変動するときの地中音から地すべりを予 測できないかとの考えに至った。このようにして、 一昨年度から音響的手法を用いた斜面監視システ ムが考案された。

<u>2.研究の目的</u>

地すべりが発生する前には、平常時に比べて、地 下水の流れや土構造の変動による地中音の微少変 化があると考えられる。そこで、本研究は写真-1 に

示す振動センサを用い て、これらの地中音の 変化を前兆現象として 捉え、地すべりを予測 するための基礎的な検 討を行うものである。

昨年度は、地すべり現

写真-1 センサ

場での計測が行われたが、採集された地中音が前兆 現象によるものかどうかの特定ができなかった。そ のため、これを特定するには、前兆現象とこれが発 する地中音との関係を明らかにしなければならな い。その方法として、今年度は模型を用いた実験を 行うことにした。この模型実験により、地すべりの 前兆現象であると考えられる地下水の流れを擬似 的に発生させ、これが発する低周波音を測定し、地 すべりの予測に繋がるかどうかを検討することを 目的とする。

また、新たな地すべり現場で地中音の計測を行い、 採集したデータと模型実験の結果との比較を行う。

<u>3.模型について</u>

地すべりとは、どこにでも発生するわけではなく、 粘土が広く分布しているところや、池または沼が多 く存在するところなど、その発生する地質・地形は 限られている。このような特定の場所において、降 雨や融雪などによる地下水に代表される、誘発要因 の影響を受けることによって起こり得る現象であ る。したがって、これを再現するため模型には砂と

粘土を二層に敷き詰め、 境界付近に擬似的に水 を流す。本実験では、 この地下水の流れを前 兆現象として考える。 実験に使用する模型の 概要を図 3-1 に示す。

図 3-1 模型の概要

<u>4.測定機器の接続状況</u>

測定機器の接続状況を 図 4-1 に示す。センサは、 特性の異なる J センサお よび S センサの 2 種類を 用いて、それぞれ模型に打 ち込んだ単管パイプに 取り付ける (写真-2)。

写真-2 センサ取り付け

5.模型を用いた基礎実験(第1期)

今年度は、地すべりの前兆現象である地下水の流 れを、模型を用いた実験によって擬似的に発生させ、 センサで変化を捉えられるか検討することを目的 としている。そのため、まず模型に水を流した前後 で、音の大きさや周波数成分に変化が現れるか実験 を行った。実験場所を写真-3 に示す。

写真-3 音響振動工学センター室内

5.1 実験方法と結果

高速フーリエ変換(以下、FFT とする)による計 算結果を S センサについて示す。

5.1.1 水を供給しない状態でノイズを測定(図 5-1)

5.1.2 水を供給した直後を測定(図 5-2)

0.01	-				_								表	百谷	ė.
0.008															
0.006															
0.004															
0.000															
0.002	I											Star.			
0	0.12 27	53.8 80.7	108 134	161 188	215	242	269	296	322	349	376	403	430	457	484

5.1.3 水が浸透していく経時変化を測定(図 5-3)

0.01	10分	後
0.008		-
0.006		-
0.004		_
0.002		
0		
0.12	53.8 80.7 108 161 161 161 161 215 269 269 269 269 269 269 276 376 403 376 403 376	404
0.01	20分	後
0.008	2073	~
0.006	1	
0.004		
0.002		
0.12	53.8 30.7 1108 1134 2296 2295 2295 2295 2295 2295 2295 2295	+0+ 1
0		-
0.01	30分行	後
0.008		-
0.006		_
0.004		
0.002		
0	A. A. I	
.12 27	3.3. 0.7 0.7 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0	†0 †

5.2 考察

浸透直後や経時変化を測定すると、ノイズ時に比 べ80Hzから180Hz付近の周波数において、出力さ れる電圧に変化を確認することができた。しかし、 これらの変化以上に50Hz、100Hz付近の周波数が 卓越していることが分かった。

6.模型を用いた基礎実験(第2期)

前節の実験結果から、模型内に水を流すことによ る地中音の変化を確認することができた。しかし、 同時に50Hzや100Hz付近の周波数も卓越しており、 これが電源ノイズである可能性が高いとの指摘を 受けた。これは、パソコンの電源や蛍光灯等による 影響が考えられる。そこで、できるだけノイズの少 ない環境下で実験を行うべく改善を行った。

6.1 実験方法の改善

電源ノイズの影響を少なくするために、模型を残響 室前室へ、パソコンを残響室内へとそれぞれ別の部 屋に設置した(写真-4、5)。また、実験時はすべて の電気を消すことにした。

写真-4 残響室前室 6.2 実験方法と結果

写真-5 残響室

FFT による計算結果を S センサについて示す。 6.2.1 水を供給しない状態でノイズを測定(図 6-1)

6.2.2 水を供給した直後を測定(図 6-2)

6.2.3 水が浸透していく経時変化を測定(図 6-3)

6.2.4 浸透完了時のノイズを測定(図 6-4)

6.2.5 水を排水させた直後を測定(図 6-5)

6.2.6 排水したときの経時変化を測定(図 6-6)

6.3 考察

図 6-1 の結果から、前節まで卓越していた 50Hz、 100Hz 付近の周波数が見られなくなった。このこと より、これまで卓越していた周波数は、指摘された 通り電源ノイズであったことが分かった。図 6-3 の 結果から、水を浸透させたことによって周波数が数 Hzずつ高い領域へと移動していく現象が見られた。 水の供給により試料は湿潤状態になることから、こ れに伴う音は低くなることが予想される。しかし、 これとは逆に徐々に高くなっていることから、水に よる影響を捉えているものと考えられる。また、こ れは図 6-6 に示すように、排水させたことによって も同様の現象となるため、模型内の水位による影響 でないことも確認できた。

これらの結果から、水を浸透または排水させたこ とによる周波数領域での変動は、ほとんどが 100Hz 以下の領域で起こっていることが分かった。

7.模型を用いた基礎実験(第3期)

前節の結果から、水の流れによる周波数成分の変 化を確認することができた。そこで、模型内を流れ る水の流速を変えた場合、周波数成分に特徴が掴め るか実験を行った。

7.1 実験方法の改善

定水位による流速の変化をできるようにバルブを 取り付けた筒を製作した(写真-6、7参照)。これに より、まず筒内の水位を一定に保ち、その後模型内 に水を流し、模型内の水位も一定に保つことで、模 型から流れ出てくる流量を一定となるようにした。

写真-6 筒の製作 写真-7 バルブ部分 地下水の流速は、通常の地盤状態では最大でも 0.01cm/s であることが分かっている。一方で、地す べりが発生し得るときの流速というのは未知であ るため、本実験ではこれを通常の 3~5 倍であると 仮定した。流速は 0.01cm/s, 0.025cm/s, 0.036 cm/s, 0.045 cm/s, 0.05 cm/s の 5 種類でそれぞれ一定とな るように保ち、実験を行った。

7.2 実験方法と結果

FFT による計算結果を S センサについて示す。 7.2.1 流速 0.01cm/s 時の結果(図 7-1)

7.2.2 流速 0.025cm/s 時の結果(図 7-2)

7.2.3 流速 0.036cm/s 時の結果(図 7-3)

7.2.4 流速 0.045cm/s 時の結果(図 7-4)

7.2.5 流速 0.05 時の結果 (図 7-5)

0.01	Γ															0.0	5cm	n/s
0.008		_		_				_	_	_			_	_	_		_	-
0.006	-	_	_			_	_	_	_	_	_		_	_	_		_	_
0.004		_	_			_		_	_	_								
0.002			L															
0																		
ŝ	200	26.3 52.6	78.8	105	131	158	184	210	236	263	289	315	342	368	394	420	447	473

7.3 考察

図 7-2 に示す結果から、卓越周波数は 130Hz 付近 まで一気に高くなったことが分かる。一方で、これ を除いた他の流速で比較すると、流れが早くなるに つれて徐々に周波数が高い領域へ変化していくと いう傾向が見られた。この結果からは、どれくらい の流速であれば、どの程度の周波数となるかという 特定には至らなかった。しかし、流速を変化させた ことによる周波数領域での変動は、ほとんどが 100Hz 以下であることが分かった。

近年では、岩盤の崩落を音により予測する手法と して、AE(アコースティック・エミッション)と呼 ばれる技術が用いられている。この手法では、数k Hzから数百kHzという非常に高い周波数領域で変 化があると言われている。このことから、音による 現象の予測としては高い周波数領域ばかりが着目 される傾向がある。しかし、今年度の実験結果から、 地すべりを対象とした地盤においては、100Hz以下 という低い周波数領域に着目すべきではないかと いうことが分かった。

8.地すべり現場への適用

昨年度までは沖見地すべり現場で計測を行ってい たが、今年度は新しく西山地すべり現場での計測を 行った。

8.1 地すべり現場の概要

今年度、計測を行った西山地すべり現場は、新潟県 刈羽郡西山町の国道 116 号線沿いに位置する。平成 14 年 11 月 16 日頃、この西山現場において地すべ りが発生したとの情報を得た。再度、地すべりが発 生する危険性が高いとのことであったので、現場設 置を行った。この地すべりは、国道 116 号線沿いの 切り通し部分で発生し、幅約 50m、高さ約 20mに わたり円弧型の地すべりを起こしていた(写真-8)。

写真-8 地すべり現場

平成14年11月22日、計測を開始した時点です でに押え盛土や水抜きボーリングなどの防止対策 工事が行われていた。また、地すべりの観測装置と して地表面伸縮計が3箇所に設置されていた。

8.2 西山地すべり現場の計測

8.2.1 設置状況

風雨を避けるためパソコン等の機材はテントの中 に設置した(写真-9)。テントを設置した位置は、写 真-8 に示す地すべり面から後方に 5~6m下がった 山中である。このテントから約 1m離れた樹木と、約 3 m離れた位置に打ち込んだ単管パイプにそれぞれ J セ ンサとS センサを取り付けた (写真-10、11)。

写真-9 機材設置状況

左:写真-10 樹木に付けたセンサ 右:写真-11 単管パイプに付けたセンサ センサは、樹木には高さ約 50 mに位置に、単管パイ プは1mのものを50 m打ち込み、30 mの位置に取り付

けた。なお、単管パイプには、外部の影響を少なくす るために防音用のパイロンを被せている。

8.2.2 計測状況

計測状況は、以下の通りである。

·計測期間:平成14年11月22日16時半~11月26日11時半

・サンプリング周波数 8000Hz ・サンプリング間隔 30 分

・サンプリング時間 10 秒間

・データ個数 80000 個

8.3 斜面の移動状況

現場に設置された地表面伸縮計の結果から、11月 26日の午前6時頃から、斜面の移動が再び観測され たとの情報を得た。そこで、計測を行った期間につ いて、3つの地表面伸縮計および累計雨量の関係を 図 8-1に示す。

11/22 16:30~11/26 11:30

図 8-1 累積雨量と地表面伸縮計の累計変位量の関係

8.4 計測結果

前節の結果から、11 月 26 日の午前 6 時頃から斜 面の移動が観測されていることから、センサを用い て行った計測のうち、この時間の前後を調べてみる。 図 8-2 に、移動が観測された半日前に当たる、25 日 の18時半から6時間毎の単管パイプに取り付けたS センサの計算結果を示す。

図 8-2 の結果から、26 日 0 時半に 80Hz から 250Hz 付近の周波数で変動が見られる。しかし、こ のような広い周波数領域での変化は風による場合 が多い。採集したデータを音ファイルに変換した結 果からも、これは風であることを確認した。模型実 験の結果から、水の影響による地中音の変化は 100Hz 以下の領域で発生することが分かっている。 そこで、図 8-2 の結果について 100Hz 以下に着目し てみると、西山地すべり現場においては 35Hz 付近 の周波数に、時間による出力電圧の変動が見られる。 したがって、この変動を 25 日の昼から 26 日の昼に かけて時系列で表し、これを図 8-3 に示す。また、 同じ時間帯での時間雨量の推移を図 8-4 に示す。

図 8-3 時間による 35Hz 付近の電圧の変動

図 8-4 時間雨量の推移

8.5 考察

図 8-3、図 8-4 を見ると、26 日 0 時以降で観測さ れた降雨によって、出力電圧は大きくなっており、 その大小関係も類似していることが分かる。しかし、 26 日の 6 時以降では降雨は観測されていないにも 関わらず、徐々に電圧が大きくなっていることが分 かる。この結果から、雨水が浸透したことにより形 成された地下水流が、6 時頃に斜面が移動したこと により一時的に遮断され、その後時間の経過ととも に再び流れ始めたことが考えられる。

<u>9.結論</u>

- (1) 模型内の水の影響による周波数成分の変化 を、FFT による計算結果から確認できた。
- (2) 岩盤崩落の予測とは異なり、地すべりを対象 とした地盤においては、周波数の変動は 100Hz 以下の領域であることが分かった。
- (3)現場計測において、センサを単管パイプに取り付ける場合、防音対策としてはパイロンだけでは不十分であり、改善の余地があることが分かった。

<u>10.今後の課題</u>

- (1)現在使用しているセンサの特性は、変動が確認できた100Hzよりも高い周波数帯にある。 したがって、さらに低い周波数領域に特性を 持つセンサを使用することが望ましい。
- (2)異なる寸法の模型で同様の実験をする必要が ある。また、使用する砂や粘土についても、 異なる物性値の試料で実験する必要がある。
- (3)単管パイプを用いて地すべり現場での計測を 行う場合、ノイズを少なくするためには、パ イロン以上に防音効果の高い装置を考案す る必要があると考えられる。

<u>11.参考文献</u>

- (1)大崎順彦:地震動のスペクトル解析入門、鹿島出版会、1994年
- (2) 山本荘毅:地下水文学、共立出版、1992年
- (3)高橋彦治:土木技術者のための地質学、鹿島出版会、1974年