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ABSTRACT. The purpose of this paper is to determine a method capable to predict noise both low and 
high frequency. Another purpose is to determine a boundary between Statistical Energy Analysis and 
Finite Element Analysis for noise prediction. An analytical model of a Z-shaped plate structure is used, 
and a set of power flow equation is formulated for the plate structure in order to perform SEA. To solve 
these equations, SEA parameters such as CLF, ILF, and mode count are estimated. A FEM model of the 
structure is also made to perform Modal Analysis, First 20 modes are evaluated, and Harmonic Analysis. 
An experiment measuring sound pressure level for each plate is also carried out to confirm the analytical 
results. The results for this type of structure, confirmed that SEA is valid above 63Hz and FEM is valid 
below 31.5Hz in octave band. Moreover, a new concept of evaluating this boundary between SEA and 
FEM using mode count is also proposed. 
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1. Introduction 
 

The noise pollution in residential areas is an 
important issue for automotive and railway transport 
over steel bridges. There are several sources of that 
noise: the wheel/rail interaction, the engine noise, 
aerodynamics noise, and the noise caused by 
vibrations of steel bridges, rail track for railway 
bridges, or their support. The later is mainly 
recognized on bridges because the vibrations excite 
the bridge structure, and cause the amplification of 
noise. This type of noise is dominant in a frequency 
band from 10Hz up to 1kHz. 
 The analysis of vibrations of a structural system 
subjected to a given excitation becomes more 
difficult for increasing frequencies. The Finite 
Element Method (FEM) analysis of noise generated 
by automotive vehicles on bridges is restricted to 
frequencies below 100Hz due to the required 
elements per wavelength. For high frequencies, the 
Statistical Energy Analysis (SEA) is commonly used 
to predict noise and vibration. However the 
suitability of the SEA for vibration analysis becomes 

poorer for decreasing frequencies where modal count, 
SEA parameter, is not reliable. 
 In this research, a Z-shaped plate structure is adopted 
as the object of the research and estimated the sound 
pressure level using SEA, FEM. And an Experiment is 
also carried out to confirm the validity of the simulation 
results. 
  
2. Simulations 
 
 Simulations are performed using SEA model and 
FEM model. 
 

2.1 Statistical Energy Analysis 
 

   The concept of SEA was first introduced by R.H. 
Lyon and P.W. Smith as a noise and vibration 
estimation tool for complex structure. With the SEA 
method, structural components are considered as a set 
of equivalent vibrating elements, and evaluated the 
vibration condition of the element as a statistical 
average over the frequency band and space. 
  In SEA, a structure is discretised into a number of 
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substructures called subsystems. And the response is 
described in terms of energy where the excitation is 
called input power. Lyon showed that the power flow 
is proportional to the difference in uncoupled 
energies of the resonators and that it always flows 
from the resonator of higher to lower resonator 
energy. Below, an explanation is given on basic 
power flow equation based on SEA. 

where : modal density, 1n 1η : intrinsic loss factor, 

12η : coupling loss factor are called SEA parameters. If 

SEA parameters and input power are known, the 
dynamical energy distribution of the structure can be 
easily determined. Therefore Sound Pressure Level for 
each subsystem is known. 
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Figure 1. Power flow relation between 
two subsystems. 

2.1.1 Power Flow Equations  
The power flow relations of a structure consisting 

of two subsystems are shown in Figure 1. The 
equations for the power flows between subsystem1 
and subsystem2 under typical SEA conditions are 
expressed as follows. 
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 In addition, transmitted power  is expressed 

with the following equations. 
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where 12η  and 21η  in SEA satisfy the reciprocity 

relationship 12 21 21n nη η
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Figure 2. Calculation flow for SEA.  
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2.1.2 SEA Model 

Consequently, power flow equations for subsystem1 
and subsystem2 can be expressed as 
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A Z-shaped plate structure where plates are 
coupled with each other at right angle is modeled for 
the simulations shown in Figure 3. Here, the plate 
structure is discretised into three subsystems and each 
subsystem posses the same physical and geometrical 
properties shown in Table-1. 

  (1.6) 

 



  
 
 
 
 
 
 
 
 
 
 
 

Figure 3. SEA model(Z-shaped). 
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Table-1 Physical properties for Subsystem1.  
 
(b

Physical Properties for SubSystem1 

Young modulus (N/m2) 112.1 10×  

Mass density (kg/m3) 7800  

Poisson’s ratio 0.3  

Length (m) 0.4  

Width (m) 0.2  

Height (m) 0.0023  

 
 
2.1.3 Estimation of SEA Parameters 
 Since all the subsystems of the SEA model have the 
same properties, only subsystem1 is discussed here. 
 
(a)  Mode Count 

Mode count represents the number of 
resonance modes available in the band of interest for 
the subsystem to receive and store dynamical energy. 
The mode count of a structural subsystem is 
evaluated by using the following Equation. Figure 4 
shows the mode count of subsystem1 in octave band. 
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Figure 4. Mode count of structural subsystem SS1.
 Coupling Loss Factor(CLF) 
    Coupling Loss Factor gives the loss rate 
when power transmits from one subsystem to 
another. The following equation is used to evaluate 
the CLF of plate structure. 

g c
ij

i

c L
S
τ

η
πω

=           (1.8)  

where cg: the group velocity of the bending waves, 
Lc: the coupling length, τ :the transmission 
co-efficiency, Si: the surface area, ω: the center 
angular frequency of the band of interest. Figure 5. 
shows the CLF η12 of the coupling between 
subsystem1 and subsystem2. 
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Figure 5. Coupling loss of structural subsystem 
SS1. 



(c)   Intrinsic Loss Factor(ILF) 
   Intrinsic Loss Factor of a subsystem 
represents the loss percentage when the input 
power to the subsystem from an external 
excitation source is converted to the dynamical 
energy of the subsystem. ILF is not possible to 
determine by theoretical equation like CLF. 
Experiment is the only way to measure it. In this 
research, an experimental equation shown 
below is used. 

           0.70.98i fη −= ×            (1.9) 

Figure 6. shows the ILF of subsystem1. 
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can appear here. And the physical and geometric 
properties of the model are same as SEA model. 
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)  Input Power (IP) 
  In this research, Input Power is evaluated 
 experiment. Vibration velocity is measured at 
points on the surface of subsystem1 by 
citing the structure with a vibrator. Then the 
ut power for the structure is evaluated by 

ing the following equation. 

                    (1.10) 2E m v= 〈 〉

ere m: mass, <v2>: spatial square average of 
e vibration velocity. 

Finite Element Method (FEM) 

o types of analysis, modal and harmonic, are 
ed by employing ANSYS/ED 5.7 FEM 
e. Figure 7. shows the FEM model of the 
tructure which has 300 elements. Shell 
t with 4nodes is used. The left end of the plate 
e is constrained as such that no displacements 

Figure 7. FEM model. 

Figure 6. Intrinsic loss of Structural subsystem.
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Figure 8. represents the noise analysis flow using FEM 
that is used in this research. And related equations are 
also shown here. 
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Figure 8. Noise analysis flow using FEM. 

 
First 20 modes are calculated by modal analysis, 

where Block Lanczos method is used for mode 
expansion. Figure 9 shows the mode count that 
presents in each band of octave band. 
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Figure 9. Mode count presents in each band of octave 
band. 

 
 
 
 
 
 
 
 
 
 
 

 
When the natural frequencies of first 20 modes are 

nown, a harmonic response analysis applying a 
inusoidal force is performed to evaluate the nodal 
isplacement around the resonance frequency. 
aximum amplitude of the sinusoidal force is 1. 
nd the harmonic analysis is performed from 1Hz to 
77Hz. 

 
 

Since the microphones are set just 5cm away from 
each plate, no distance decay is considered. 

Figure 10. Positions of microphones and other 
apparatus 

Finally, sound pressure level for each microphone is 
evaluated in octave band. 
 
4. Results and Discussions Since the nodal displacements, calculated by 

armonic analysis, are known Sound Pressure Level 
or each plate is determined by performing the 
alculations shown in Figure 8. 

 
Figure 11. shows the Sound Pressure Level in octave 

band evaluated by simulation, SEA and FEM, and 
experiment for plate1. It is known that SEA is 
applicable to evaluate the Sound Pressure Level at 
125Hz and higher. In this research, simulated sound 
pressure level, SEA results, at 63Hz and above are 
found reliable, as the difference between simulation 
result and experimental result is within allowable range, 
3dB. And at 31.5Hz, FEM result is closer to 
experimental result than SEA. Therefore FEM analysis 
used in this research is appropriate for 31.5Hz and less. 

. Experiment 
An experiment is carried out to measure the 

ound Pressure Level in order to check the validity 
f simulation results. 
Figure 10.represents the positions of microphones 
nd other apparatus. The left end of the plate 
tructure is clamped that no displacements can 
ppear. A vibrator, only excitation source for the 
tructure, is placed at the center of the right end. 
xperiment is performed by changing the excitation 

requency of the vibrator from 22Hz to 354Hz using 
n oscillator while keeping the amplitude fixed by an 
ttenuator. 

 

Vibration pickup accelerometer is used to measure 
he vibration velocity at 250Hz to evaluate the Input 
ower of SEA. 
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Figure 11. Comparison of results for plate1



  
(a) Sound Pressure Level at 63Hz and 

higher can be predicted by SEA for 
this type of model. 

To be sure of the simulation results, a comparison 
is also performed using mode count evaluated by 
both SEA and FEM. It’s a new approach to find the 
boundary between SEA and FEM. Figure 12 
represents the comparison of inverse mode count. 

(b)  And Sound Pressure Level at 
31.5Hz and below must be predicted 
by FEM.   
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(c) The highest octave band that doesn’t 
have any resonance mode and less 
than that must be analyzed by FEM 
and rest can be analyzed by SEA 
with having enough accuracy. 

 
6. Further Research 
 

(a) Further works must be performed by changing 
the type of the model and the coupling patterns. 
Welded coupling can be raised as an example. 

 
 
 

Figure 12. Comparison of inverse mode count. (b) And further experiments should be carried out to 
make sure that the proposed method to find the 
boundary between SEA and FEM works at all 
circumstances. According to FEM results, at 31.5Hz of octave 

band doesn’t have any resonance mode. Therefore 
the 1/N line diverges at 31.5Hz. On the other hand, 
SEA results shows that 31.5Hz posses resonance 
modes. Since FEM results are reliable at low 
frequencies, FEM results can be considered as 
accurate. If the mode count is zero, the modal energy 
turns to infinity. Therefore the fundamental concept 
of SEA is collapsed. 
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