大気水圏ダイナミクス研究室	猪野 祐一
指導教官	早川 典生

1はじめに

降雨 河川流量変換系の最新技術である分布型水文 モデルでは,表面流出,地下水流出をモデル化する新 安江モデル⁵⁾のような貯水槽モデルが組み込まれてい る.新安江モデルでは,降雨または浸透水を貯水層に 貯留し,流出または浸透させる.しかしながら,これ らのモデルのパラメータが実際の土層中の水分輸送と 対応しているかどうかが明確ではない.そこで,本研 究では雨水の地中への浸透過程を,不飽和浸透流の基 礎方程式を解くことにより解明した浸透モデルを構築 する.その上で,浸透モデルによる結果から新安江モ デルにおけるパラメータを算出し,それらのパラメー タの意義を明らかにしようとするものである.

2 浸透モデル概要

本浸透モデルでの土壌中における不飽和浸透流の計 算方法は Richards (1931)の方程式を採用した.

$$\frac{\partial\theta}{\partial t} = \frac{\partial}{\partial x} \left\{ k(\theta) \frac{\partial \phi(\theta)}{\partial x} \right\} + \frac{\partial}{\partial y} \left\{ k(\theta) \frac{\partial \phi(\theta)}{\partial y} \right\} + \frac{\partial}{\partial z} \left\{ k(\theta) \frac{\partial \phi(\theta)}{\partial z} \right\} + \frac{\partial k(\theta)}{\partial z}$$
(1)
ここで,毛管ポテンシャル $\phi(\theta)$ と透水係数 $k(\theta)$

は含水率 θ に依存して決まり, Brooks and Corey モデ μ^{2} を用いると,

$$\phi(\theta) = \phi_b S_e^{-\frac{1}{\lambda}} \tag{2}$$

$$k(\theta) = k_s S_e^{3+\frac{2}{\lambda}} \tag{3}$$

となる.また,検討ケース2でのみ次式のような van Genuchten モデル⁴⁾を用いた.

$$\phi(\theta) = \frac{\left(S_e^{-\frac{1}{m}} - 1\right)^{\frac{1}{n}}}{\alpha} \qquad (4)$$

$$k(\theta) = k_s S_e^{\frac{1}{2}} \left(1 - \left(1 - S_e^{\frac{1}{m}} \right)^m \right)^2 \quad (5)$$

ここで, ϕ_b は空気侵入圧, k_s は飽和透水係数であり, , , n, mはパラメータである.

また, S_e は有効飽和度であり,次式より与えられる.

$$S_e = \frac{\theta - \theta_r}{\theta_s - \theta_r} \tag{6}$$

ここで, θ_r は残留含水率, θ_s は飽和含水率である²⁾. これらはそれぞれ土壌によって変わるパラメータである.

浸透モデルでは,まず流域をメッシュ分割し,各メ ッシュ間の流量を式(1)を差分化して計算する.ま た,時刻 t と時刻 t+ t の含水率の平均を使用して流量 を計算し時刻 t+ t の含水率を implicit 的に算出した.

3検討ケース

3.1 ケース1

本モデルの検証を目的として,浅沼ら⁶⁾による観測 結果との比較を行った.これは特に,屋外におけるモ デルの適用性を検証するものである.

観測圃場は,東京大学生産技術研究所千葉実験所(千 葉県千葉市)構内の一画,約 30m 四方の裸地面の平坦 地である.元来草地であったものを,地表面から約 20cm 程度の草を剥ぎ,その上に成田砂を 30cm 程客土したも のである.そのため,圃場の地盤条件は,

表層~35cm	• • •	均質な成田砂
35cm ~ 50cm	•••	黒色腐食土
50cm 以深		関東ロームキ

となっている.観測期間は 1990 年 7~9 月の3ヶ月間 である.使用した観測データは,深さ 3m までのテンシ オメーターによる1時間毎の含水率と時間雨量である.

各層の土壌物理パラメータとしては, pF 試験および 透水試験結果に Brooks and Corey モデルを Levenberg-Marquardt 法によって当てはめを行って決定 した.

浸透モデルでは蒸発散を考慮していないため,昼間 のような蒸発が活発に起こっている場合に,適用する のは難しい.すなわち,含水率の変化を再現する場合 に,計算開始日時は夕方から降雨が開始するような日 時がふさわしい.そこで,そのような条件を満たして いる9月13日16:00から計算を開始するとし,これ以 降の雨量を地表面の境界条件として設定した.9月13 日 16:00 前後の雨量を図 1に示す.

20 (jng 15) 計算開始日時 1990 年 9 月 13 日 16:00

日時

9月14日

9月15日

9月13日

3.2 ケース2

0

9月12日

Brooks and Corey 以外のモデルを適用した場合の検証 として *Boulier*¹⁾の実験結果と比較を行った.

試験土柱は,高さ 0.935m,内径 0.06m の円柱に密度 1670 ± 10kg・m⁻³ 平均間隙率 0.37m³m⁻³の一様な砂が敷き 詰められている.下端にはステンレスの穴あきプレー トがあり,その穴はピエゾメーターにつながっている. 上端には金属の格子が置かれている.含水率の測定に はガンマ線の減衰率による測定(誤差範囲 ± 0.01 m³m⁻³) が用いられている.含水率の測定間隔は,360,720,1080, 1800,2700,3600,4500sec となっている.

土壌物理パラメータは, boulier が決定したものを使 用する.これについては, van Genuchten モデルのもの が与えられている(表 1).

表 1 土壌物理パラメータ(ケース2)

パラメータ	值
S	0.312
r	0.0265
k_{s} (ms ⁻¹)	4.28e-5
(m ⁻¹)	4.37
п	2.2223

この土柱の上端に一定の降雨 *P* を与えた 実験では *P* =0.535 k_s を与えたとしているので,浸透モデルでは *P*=82.4 (mm/hour)を与えた.

初期含水率については,初期含水率曲線が示されて いるので,それを使用した.

3.3 ケース3

本研究の目的である貯水槽モデル(新安江モデル) のパラメータの意義を,浸透モデルによる結果と対応 させることによって明らかにすることを目的として, 三次元小流域において浸透モデルを構築し,流出解析 を行った.これについては,平面モデルなど複数のケ ースについて行ったが,ここではより実流域に近い地 形である斜面地形についてのみ記す.使用したDEM としては関川上流域における適当なDEMを切り出し, 使用した(図 2).三次元的に表すと図 3のようになる.

115	121	137	166
81	93	120	147
50	66	104	131
10	46	81	122

図 2 使用したDEM

土壌による流出特性の違いをみるために,透水性の 良い土壌として成田砂,透水性の悪い土壌として関東 ロームの2種類の土壌を用いることとした.各土壌の 一般的な土壌物理パラメータを表2に示す.この値は, 乾燥過程,湿潤過程の平均として算出された値である.

表 2 土壌物理パラメータ(ケース3)

パラメータ	成田砂	関東ローム
S	0.400	0.772
r	0.077	0.589
k_{s} (ms ⁻¹)	2.0e-4	5.0e-6
_b (m)	-0.4	-0.4
	0.286	0.250

境界条件は, y 方向の両端を不透水層, x 方向の始端 を空気,終端を標高112mまで地下水層それより上は不 透水層とした.降雨については,10mm/hourを計算終了 まで与え,x 方向始端から発生する地下水流出をモデル の出力値とした.

初期含水率は,計算により作成した.まず,初期の 地下水面位置を斜面モデルでは全メッシュとも標高 112mと設定し,含水率は地下水面より下では飽和含水 率 ,地下水面より上では水分特性曲線に従う含水率 として設定した.次にこの状態から 300 時間,降雨を 与えずに計算を行い,境界からの流入出量を収束させ, その時の含水率分布を初期含水率として設定した.

4 結果と考察

4.1 ケース1

ケース1の観測結果と計算結果を図4に示す.深さ 0.5~0.75m で浸潤線位置を比較すると,計算値と観測 値はよく一致した.深部において微妙にずれているが, これはパラメータの誤差のほか,計算では1時間内に 均一な降雨を与えているが実際はそうでないことも, この浸潤線形状の違いにあらわれていると考えられる.

4.2 ケース2

ケース2の実験結果と計算結果を図 5に示す.実験 結果と計算結果はよく一致した.

図 5 ケース2の実験値(×)と計算値(線)

4.3 ケース3

ケース3の計算結果を図 6に示す.降雨開始から 徐々に地下水流出が増加し,収束する様子が表れた.

この試験地層について,新安江モデルのパラメータ 算出を試みた.これについては,地下水流出が深く関 わっている地下水減衰係数*C*_gおよび最終浸透能*F*_cにつ いて行った.

地下水減衰係数は主要降雨後において,河谷や流域 に貯留された水の減衰状況を示している.*C_g*は時間単 位によって変わる値であるため,ここでは貯留係数*K* について算出する.具体的には,地下水流出量の経時 変化に,次式を当てはめ,決定した.

$$Q = Q_{\text{max}} \cdot \left(1 - e^{-\frac{t}{K}}\right) \tag{7}$$

ここで, *Q* は地下水流出量, *Q_{max}* は地下水流出量の最 大値である.

図 7 に当てはめ結果を示す.当てはめには *Levenberg-Marquardt 法*を用いた.これによると,貯留 係数 K は,関東ロームで 2.27hour,成田砂で 1.91hour という結果となった.透水性の悪い土壌では,貯留し ている時間も長くなり,このような違いがあらわれた と考えられる.

最終浸透能 F_c は流域全体に十分に大きな降雨 (1000mm/hour)を与えた場合の,地表面における最終 的な浸透能として算出した.

図 8に浸透能の経時変化を示す.これによると,最 終浸透能 F_c は関東ロームで 3.52mm/hour,成田砂で 667mm/hour という結果となった.ここでも透水性によ る違いが大きくあらわれたと言える.

5 結論

本研究では Richards の方程式を解き,三次元試験地 層における土壌水分輸送および地下水流出量,表面流 出量を算出する浸透モデルを構築し,いくつかのケー スにおいて数値解析を行った.

本モデルを浅沼らの屋外での成田砂圃場における観 測と, Boulier の実験室内での砂質土における実験にお いて検証を行ったところ,浸潤線の降下位置における 比較で,よい一致を得た.

実流域に近い地形を想定した試験地層において,透 水性の違う2種類の土壌を対象として,新安江モデル におけるパラメータの妥当性の検討を試みた.これに より,土壌による特性をみることはできたが,具体的 な数値でのパラメータ比較には,さらに実流域におけ る計算が必要である.

6 参考文献

1) Boulier, J. F., J. Touma, and M. Vauclin : "Flux-Concentration Relation-Based Solution of Constant -Flux Infiltration Equation : I. Infiltration into Nonuniform Initial Moisture Profiles", *Soil Sci. Soc. Am. J.*, 48, 245-251, 1984.

2) Bras, R. L. : "Flow in unsaturated porous media", Hydrology An Introduction to Hydrologic Science, 350-388, 1990.

3) Brooks, R. H., and A. T. Corey, M. ASCE : "Properties of porous media affecting fluid flow", Journal of the irrigation and drainage division proceedings of the American Society of Civil Engineers, 61-88, 1966.

4) van Genuchten, M. T., and D. R. Nielsen : "On Describing and predicting the hydraulic properties of unsaturated soils", *Ann. Geophys.*, 3(5), 615-628, 1985.

5) Zhao R.-J. : "The Xinanjiang model applied in China", J. Hydrol., 135, 371-381, 1992.

6)浅沼 順,虫明 功臣,沖 大幹,小池 雅洋,弘中 貞之,吉
永 貴行: "裸地面蒸発に関する熱収支・水収支同時観測(I)",
第3回陸域水循環ワークショップ予稿集,1990.

7)半沢 倫子: "レーダ雨量計データを用いた洪水流出予測手法の開発に関する研究",長岡技術科学大学修士論文,2001.