地盤工学研究室 岩井雅博

指導教官 杉本光隆

<u>1.はじめに</u>

現在,シールド機の制御・操作は自動掘進シス テムにより行われている.しかし,シールド掘削 に関連する地盤物性値やシールド機に作用する外 力,およびその挙動については未解明な点が多い. これらの問題点を解決するためには,シールド機 の作用力が力学的釣り合い条件を満たすよう,シ ールド機の挙動・掘進条件を考慮できるシールド 機動力学モデルの確立が必要である本研究では, 上総層群上星川層細砂(Ks)における中折れシー ルド機挙動の,実測値と動力学モデル¹⁾による計 算値とを比較することにより,本モデルの妥当性 を検証することを目的とする.

<u>2.解析方法</u>

解析手順は以下のとおりである.

現場実測データによる地盤物性値の逆解析 で求めた地盤物性値によるシールド機挙動 予測

3.解析データ

解析に用いた実測データは,土被り約 12m,N 値 50 以上の上総層群上星川層細砂(Ks)に,マシ ン外径2.28mの泥水式中折れシールドで掘削され た浦舟線配水管トンネルの 621~640Ring の現場 計測データである.解析区間は上り勾配 0.08%の 直線である.

現場の地質縦断図を図-1 に,解析に使用した入 力物性値を表-1 に示す.

<u>4.解析結果</u>

シールド機軌跡,シールド機挙動の実測値と計 算値を図-2,図-3に示す.図-2より,シールド機 動力学モデルによるシールド機軌跡は実測値と良 く一致していることがわかる.また,図-3より, 前胴ヨーイング角 (方位角)の計算値は実測値 と良く一致していること,後胴ヨーイング角は水 平中折れ角分ずれていること,前胴ピッチング角

,(+:下向き)は常に上向きで,実測値と若干ず れているところがあること,後胴ピッチング角は 鉛直中折れ角分ずれていること,掘進速度 v。はば らつきがあるが,実測値と良く一致していること, がわかる.

図-4,図-5は,スキンプレート展開図上に,距 離 513.14 m におけるシールド機周辺の法線方向 地盤変位分布(+:掘削面がトンネル外側へ変位) とスキンプレート法線方向土圧分布を示したもの である.ここで,周方向0,360degはシールド機 下端を,180degはシールド機上端を示し,軸方向 上側はシールド機掘進方向である.また,この時 のシールド機に作用する外力の一覧を表-2 に示 す.

図-4より,掘削面はトンネル内側に変位し主働 状態となっていること,天端沿いの法線方向地盤 変位は,前胴にあっては,CF側(-1.2cm)より中折 れ側の(-1.8cm)の方が小さくなっていて,前胴が トンネル掘削面より上向き,後胴にあっては,中

折れ側(-1.6cm)よりテール側(-0.7cm)の方が大き くなっていて,後胴がトンネル掘削面より下向き となっていること,周方向に地盤変位分布が乱れ ている所があること,がわかる.これらは,トン ネル計画平面線形が直線であること,前胴が後胴 より上向きの鉛直中折れ(16.2 分)をしているこ と、シールド機が蛇行していることのためである と考えられる.

上記は,図-5 に示す法線方向土圧分布,表-2 に示すシールド機に作用する外力と整合している.

表-1 入力物性值

地盤名	K _{H0}	$\frac{k_H}{(MN/m^3)}$	μ_{ms}	$\frac{c_{ms}}{(\mathrm{kN/m}^2)}$	а	b
Ks	0.665	303.56	0.1	0.0	34.5	1.0

表2 作用力一覧(距離 513.14m)

	Force		F_p	F_q	F_r	M_{p}	M_{q}	M_r
	type	Body	(kN)	(kN)	(kN)	(kN-m)	(kN-m)	(kN-m)
-	f_I	Front	120	0	0	0	184	0
		Rear	130	0	0	0	-114	0
	f_2	Front	0	0	0	0	0	0
		Rear	0	0	0	0	0	0
	f_3	Front	0	0	0	0	0	0
		Rear	7	1	1522	-1	9	0
	f_4	Front	-7	6	-1253	-17	7	148
		Rear	0	0	0	0	0	0
	f_5	Front	-166	-15	-127	33	-191	-148
		Rear	-84	8	-142	-15	105	0
	Σf		0	0	0	0	0	0

図-4 法線方向地盤変位分布(cm)(距離 513.14m)

5.まとめ

シールド機動力学モデルによる中折れシールド 機挙動は,実際のシールド機挙動と良い一致を見 た.これより,中折れシールド機挙動に対しても, シールド機動力学モデルの適用性が確認された.

参考文献

1) 杉本光隆・Aphichat Sramoon:施工実績に基づ くシールド機動力学モデルの開発,土木学会論 文集 No.673/ -53, 2001.

170

130

図-5 法線方向土圧分布(kN/m²)(距離 513.14m)