酸化銅 リン酸塩系低融点ガラスの物性評価

環境材料科学研究室 高草木俊之

指導教官松下和正

1. 緒言

現在、環境汚染問題の高まりを受け、環境化社会への移行が行われている。社会基盤も浪費型社 会からリサイクル社会へと変革されつつある。環境影響を考慮した法規制の整備により、材料分野 でも変換の時期が訪れている。

材料分野において、Pb は多くの特性を持ち、且つ安価であるため様々な用途で用いられてきた。 しかし、現在は環境汚染物質として規制対象とされ、削減を求められ将来的に使用禁止の方向に進 んでいくと考えられている。このような背景から、現在様々な分野において Pb-free 化が強く望ま れている。

低融点ガラスはエレクトロニクス産業、オプトエレクトロニクス産業にとって非常に重要な材料 である。実際、我々の生活環境においても目に見えない部分で多く使用されている。しかし、従来 の PbO 含有低融点ガラスは、環境汚染物質として規制対象材料となる。よって、現在の低融点ガ ラスの主流である PbO 含有ガラスに変わる低融点ガラスの開発が、産業技術、環境保全の両面で 強く望まれている。

本研究は、従来の PbO 含有ガラスに変わる環境影響不可の小さい新規低融点ガラスの開発を目 的とするものである。P₂O₅-CuO-ZnO3成分系ガラス組成に着目し、まずこの組成系のガラス化範 囲を明らかにした。ガラス化範囲の確定後、還元剤として Glucose を添加しガラス中のCuイオン 平衡を変化させた時、還元作用がガラスの諸物性に与える影響を調査し、低融点ガラスとしての可 能性を検討した。

2. 実験方法

2.1 大気雰囲気溶融ガラスの作製

化学試薬を用いて Fig.1 に示す手順で大気 雰囲気溶融ガラスの作製を行った。化学試薬 を様々なモル比で秤量・混合し、アルミナ坩 堝に入れ電気炉内で 300 で 2 時間乾燥を行 った。乾燥後、1100 で 30 分間溶融を行い、 大気雰囲気中で炭素鋳型にキャスト急冷した。 DTA 測定により得られたガラス転移温度(Tg) より、(Tg-20) で 2 時間熱処理を行い分析 試料とした。

Fig.1 Preparation procedure of P₂O₅-CuO-ZnO glass systems in open atmosphere

<u>2.2 還元雰囲気溶融ガラスの作製</u>

2.1 で作製した大気雰囲気溶融ガラスを用いて、Fig.2 に示すような手順で還元雰囲気溶融ガラス

の作製を行った。大気雰囲気溶融ガラスを粉 末状に粉砕した後、還元剤として Glucose を 添加・混合した。これをアルミナ坩堝に入れ、 アルミナ蓋で密閉状態し還元雰囲気とした。 これを電気炉内で1100 で30分溶融を行い、 大気雰囲気中で炭素鋳型にキャスト急冷した。 DTA 測定により得られたガラス転移温度(Tg) より、(Tg-20) で2時間熱処理を行い分析 試料とした。

Fig. 2 Preparation procedure of P₂O₅-CuO-ZnO glass systems in reducing atmosphere

2.3 Glucose 還元

Glucose は大気中で燃焼すると以下の(2.3-1)式のように反応すると考えられる。

C₆H₁₂O₆ + 6 O₂ 6 CO₂ + 6 H₂O (2.3-1) Glucose による還元反応は炭素の酸化によって起こる。よって反応機構は炭素を導入した時と同 様であると考えられる。本研究において Glucose はガラス中の Cu²⁺イオンを Cu⁺イオンに還元す るために導入している。炭素での還元反応式を考えると(2.3-2)式のようになると考えられる。

4 CuO + C 2 Cu₂O + CO₂ (2.3-2) この(2.3-2)式から Glucose での反応式を考えると以下の(2.3-3)式の様になると考えられる。

24 CuO + C₆H₁₂O₆ **12 Cu**₂O + 6 CO₂ + 6 H₂O (2.3-3) 以前、大気雰囲気で作製したガラス中の銅イオンは 99%以上が Cu²⁺イオンの状態であることが 報告されている¹。この報告から大気雰囲気で作製したガラス中の銅イオンは、ほぼ 100%が Cu²⁺ イオンの状態であると仮定することができる。よって化学量論的に Glucose の添加量を考えること が可能になる。

2.4 分析

得られたガラス試料のガラス転移温度(Tg) 軟化温度(Tf) 線熱膨張係数()を熱機械 分析(TMA)で得られた熱膨張曲線から算出 した。熱膨張曲線の例を Fig.3 に示す。ガラス 転移温度(Tg)は熱膨張曲線の屈曲部の高温 側、低温側の各直線を外挿し、その交点とし た。軟化温度(Tf)は熱膨張曲線の降伏点の温 度とした。線熱膨張係数は室温 25 からガラ ス転移温度までの範囲から求めた。ガラス試 料のガラス化状態は目視及び X 線回折分析 (XRD)を用いて確認した。

Fig.3 thermal expansion curve for thermodilatometry (TMA)

ガラス試料の化学組成は高周波誘導結合プラズマ発光分析(ICP-AES)より求めた。またガラス中の Cu⁺イオン量はセリウム塩滴定²⁾を用い決定した。

還元雰囲気溶融に伴う析出物を、X線回折分析(XRD)及び蛍光X線分析(XRF)を用いて同 定した。還元雰囲気溶融ガラスの結晶化相の分析には、走査型電子顕微鏡(SEM)、電子線マイク 口分析(EPMA)、光電子分光分析(XPS)を用いた。

3. 実験結果及び考察

3.1 <u>大気雰囲気溶融ガラスの諸物性</u>

3.1.1 P₂O₅-CuO-ZnO 3 成分系ガラスのガラス化範囲

大気雰囲気で作製した P_2O_5 -CuO-ZnO 3成 分系ガラスのガラス化範囲を決定した。大気 雰囲気溶融ガラスのガラス化範囲を Fig.4 に 示す。Fig.4 の結果から P_2O_5 含有量が 50mol% 以下になるとガラス化しにくいことがわかる。 これは本組成において、ガラスの網目形成酸 化物である P_2O_5 が減少することによりガラス 構造を維持できなくなるためだと考えられる。 本組成において、網目修飾酸化物である CuO の含有量や両性酸化物である ZnOの含有量の 変動は、ガラス形成に対し大きな影響はなく、

網目形成酸化物である P₂O₅の減少がガラス化範囲を決める最大の要因であると言える。

3.1.2 P₂O₅-CuO-ZnO 3 成分系ガラスの化学組成

ガラス化した試料に対して、IPC-AES とセリウム塩滴定を用いて組成分析を行った。分析によ り得られたガラス試料の化学組成を Table 1 に示す。

分析の結果、各組成ともバッチ組成から多少変動することがわかった。特に P₂O₅ 含有量が減少 することがわかる。バッチ組成の P₂O₅ 含有量が増加するに従い、溶融による P₂O₅ 成分の揮発が多 くなる傾向を示した。ガラス組成により異なるが P₂O₅ 含有量が約 2~5mol%減少することがわか

った。P₂O₅含有量の減少に伴い、CuO 含有量および ZnO 含有量はバッチ組 成より多少増加した。溶融容器である アルミナ坩堝からの Al₂O₃ 成分の溶解 量は約 1~2mol%程度であったが、 P₂O₅ 含有量が増加するに伴い、Al₂O₃ 成分の溶解量は増加する傾向を示した。 また CuO 含有量が変化しても、P₂O₅ 含有量が変化しても、大気雰囲気で溶 融したガラス中の銅イオンの状態は、 ほぼ 100%が Cu²⁺イオンであることが わかった。

Table1 Chemical compositions determined	by ICP-AES a	and Cu ^{+/} Cu _{total} anal	yzed by cerate
titration of P ₂ O ₅ -CuO-ZnO glass systems			

Batch composition (mol%)	Glass compositions (mol%)					
	P ₂ O ₅	CuO	Cu ₂ O	ZnO	Al ₂ O ₃	
50P ₂ O ₅ -10CuO-40ZnO	48.32	10.11	<0.00	40.63	0.94	
50P ₂ O ₅ -20CuO -30ZnO	48.49	19.65	<0.00	30.79	1.06	
50P ₂ O ₅ -30CuO -20ZnO	48.77	29.83	<0.00	20.53	0.87	
50P ₂ O ₅ -40CuO -10ZnO	48.05	40.78	<0.00	10.40	0.77	
50P ₂ O ₅ -45CuO-5ZnO	48.56	45.25	<0.00	5.32	0.87	
50P ₂ O ₅ -50CuO	48.11	50.94	<0.00		0.95	
50P ₂ O ₅ -50ZnO	49.23			49.82	0.95	
60P ₂ O ₅ -10CuO-30ZnO	57.93	10.20	<0.00	30.91	0.96	
60P ₂ O ₅ -20CuO -20ZnO	57.53	20.76	<0.00	20.36	1.35	
60P205-30CuO-10ZnO	56.91	30.89	<0.00	10.67	1.54	
60P ₂ O ₅ -35CuO-5ZnO	57.49	35.79	<0.00	5.61	1.50	
70P205-10CuO-20ZnO	65.78	11.71	<0.00	21.30	1.22	
70P205-20CuO-10ZnO	65.74	21.50	<0.00	11.19	1.57	
70P ₂ O ₅ -25CuO-5ZnO	66.01	25.79	<0.00	6.32	1.88	

f:0.998 (Cerate titration factor)

4.1.2 P₂O₅-CuO-ZnO 3 成分系ガラスのガラス転移温度(T_g)

本組成における大気雰囲気溶融ガラスのガ

ラス転移温度 (T_g)を Fig.5 に示す。

CuO 含有量が増加するにしたがい、ガラス 転移温度(Tg)は上昇する傾向を示した。

一般にガラス転移温度(T_g)は非架橋酸素の数、結合強度、充填密度(イオン半径、配位数)に影響されると考えられている。本組成中のガラス形成能における元素の単結合エネルギーを計算してみると、PO_{5/2}は111~
89kcal/mol、CuOは186 kcal/mol、ZnOは151kcal/molである。それぞれの酸素との配位

Fig.5 Relationship between T_p and glass composition (CuO content)

数は、PO_{5/2}では4配位3架橋、CuOでは4配位4架橋および6配位6架橋、ZnOでは4配位4 架橋である。CuOの結合エネルギーが最も大きいCuは酸素との配位数も最も大きい。このエネル ギー差がガラス転移温度(Tg)に影響を与え、ガラス組成中のCuO含有量が増加するにしたがい ガラス転移温度(Tg)が上昇したものと推定できる。CuとZnは周期表で隣接しているため、原 子半径、イオン半径(2価イオン)は非常に近値である。そのため2者の大きな相違点は配位数お よび単結合エネルギーであると言える。CuO含有量とZnO含有量によるガラス転移温度(Tg)の 大きな差異はこれらに起因するものであろう。

P₂O₅含有量の増加にしたがいガラス転移温度が低下した要因は、ガラス組成中のCuO含有量およびZnO含有量が相対的に減少した影響であると考えられる。

3.2 還元雰囲気溶融ガラスの諸物性

3.2.1 還元雰囲気溶融に伴うガラスの結晶化及び析出物生成

還元雰囲気溶融ガラスのキャスト急冷時(大気雰囲気)の状態変化を観察した。例として 50P₂O₅-40CuO-10ZnO ガラスに対し Glucose を 200%添加溶融したもののキャスト時の状態変化 を Fig.6 に示す。

各組成とも Glucose の添加量の増加と CuO 含有量の増加に伴い、Fig.6 のようなガラス表 面の結晶化現象が観察された。この結晶化現 象はガラス組成、Glucose 添加量といった条件 により多少の違いがあることが確認された。 急冷過程の観察において、各組成中 CuO 含有 量が 10mol%のものでは表面結晶化は観察さ れなかった。この表面の結晶化相は金属光沢 のような様相を呈しており、また CuO 含有量 の多い組成ほど灰色から赤色に変化していた。 しかし、この表面結晶化したガラスを切断し

Glass melt

Fig.6 Surface crystallization of 50P₂O₅-40CuO-10ZnO glass melted in reducing atmosphere (glucose 200%)

てみると、表面にのみ極薄い結晶化相が存在 し、内部はガラス状態であった。このためガ ラス質部分と表面結晶化相の分析を個別に行 うこととした。なお、ガラス質部分の分析は 表面結晶化相から 1~2mm ほどの部分を取り 除いたものを用いた。

表面結晶化相の分析の結果、この表面結晶相 は Cu 酸化物であることがわかった。しかし CuO といった単一酸化物のみではなく、異な る原子価の酸化物(CuO,Cu₂O,Cu₃O₄ etc.) が存在しているものと考えられる。

Fig.7 photographs of deposit of 50P₂O₅-40CuO-10ZnO glass melted in reducing atmosphere (glucose 275%)

また過剰量の Glucose を添加溶融するとガラス中に析出物が生成した。例を Fig.7 に示す。分析の結果、銀色の塊状析出物はリン化銅 Cu₃P であった。赤色の帯状析出物は金属 Cu 及び P であった。過剰な還元反応により析出したものであることがわかった。析出物の生成をもって還元限界とした。また、この結果よりガラス中の Zn イオンは還元に対し安定であることがわかった。

3.2.2 還元雰囲気溶融ガラスのガラス転移温度(Tg)

本研究に用いたガラス組成において、Glucose 還元により変化したガラス中の Cu+/Cu_{total}比が熱 的性質に与える影響は顕著であった。Cu+/Cu_{total}比とガラス転移温度(T_g)の関係を Fig.8~Fig.9 に示す。ガラス転移温度(T_g)の低下は、ガラス中の Cu+イオン量の増加に起因するということが わかる。Glucose の還元作用によって、Cu イオンの平衡状態が変化することにより、Cu イオンの 配位酸素数の減少が起こる。この結果、ガラス転移温度(T_g)は低下する。

CuO 含有量が多いほど、相対的に Cu+イオン量も多く存在することになる。CuO 含有量の増加 に伴ってガラス転移温度(Tg)の低下範囲が ★ まくなるのは 単にガラス中の Cu+イオン

大きくなるのは、単にガラス中の Cu+イオン 量に影響されるためであると考えられる。温 度低下の傾きは CuO 含有量の多い組成ほど急 である。このことからも、Cu+イオンに還元で きる存在量が依存していることがわかる。よ って温度低下の傾きと温度低下範囲は、CuO 含有量と Cu+イオン量によって決定付けられ ると言える。本研究における物性変化は、ガ ラス中の銅イオンの原子価変化、配位数変化 に起因すると考えられる。

Fig.8 Relationship between T $_{\rm g}$ and Cu+/Cu_{total} ratio in 50P $_2{\rm O}_5$ glass systems

Sato ら¹⁾は、リン酸塩ガラス中の Cu イオンの配位状態は Cu²⁺イオンではイオン結合性の 4 配 位、Cu⁺イオンは共有結合性の 2 配位をとるモデルを提唱している。Cu²⁺イオンは配位酸素に周囲 を囲まれ、原子の移動する空間が狭く、密な構造を形成している。原子の動く領域が少ないことか ら、熱エネルギーによるガラス構造の緩和現象が起きにくい。よってガラス転移温度(Tg)が上昇 すると考えられる。Cu+イオンの電子配置はエ ネルギー準位の低い 4s 軌道を満たさない [Ar]4s⁰3d¹⁰の電子配置をとる。Cu+イオンの電 子状態は閉殻構造であるため、ガラス構造中 でアルカリ金属イオンのような網目修飾酸化 物と似た挙動を示すと考えられる。Cu+イオン の結合状態を考えると、エネルギー準位の低 い4s 軌道にd 軌道電子が1つ入ることによっ て[Ar]4s¹3d⁹の電子配置をとると考えられる。 この状態で酸素と共有結合を形成すると考え られる。直線 2 配位構造をとる理由も以上の

Fig.9 Relationship between T_g and Cu⁺/Cu_{total} ratio in 60P₂O₅ glass systems

ことから説明できる。Cu+イオンはガラス構造中で共有結合性の高い直線2配位構造でガラス網目 単位であるリン酸塩鎖を架橋していると考えられる。このCu+イオンのガラス中における結合状態 は、ガラス中の空間を多く有するため、熱エネルギーによるガラス構造の緩和現象が起きやすい。 この構造的因子がガラス転移温度(Tg)の低下を引き起こしているものと考えられる。

4. 結論

本研究に用いたガラス組成において Glucose 還元は有効であり、ガラス転移温度(T_g)を非常に 低下させることができた。この結果は新規の低融点ガラスとして使用できる温度域を実現した。し かし、簡単に結晶化が生じることから、作製時の雰囲気制御を必要とする。

参考文献

R.Sato, T.Komatsu, K.Matusita, Journal of Non-Crystalline Solids 201 (1996) pp222-230
W.P.Colse, J.F.Tillman, Glass Technology, Vol.10, No.5, Oct(1969), pp 134-146